1887

Abstract

A facultative anaerobic and Gram-negative strain, designated RP14, was isolated from the fruit of fermented for 60 days at 25°C. Strain RP14 showed 98.0 % 16S rRNA similarity to IFO 15243, but in the phylogenetic tree, NIBRBAC000500504 was its closest neighbour. The average nucleotide identity and digital DNA–DNA hybridization values between strain RP14 and 15 genomes of type strains of , were 73.8–74.4% and 16.4–20.2 %, respectively, which were lower than the recommended thresholds for species delineation. The strain grew at 25–32°C (optimum, 28°C), at pH 7.0–12.0 (optimum, pH 9.0) and with 0–2% NaCl (optimum, 0 %; w/v). Cells of strain RP14 were catalase-positive, oxidase-negative, rod-shaped and formed yellow-coloured colonies. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major fatty acid were C, C cyclo 8 and summed feature 8 (C 7 and/or C 6). The DNA G+C content was 62.8 mol%. Based on polyphasic evidence, we propose sp. nov as a novel species within the genus The type strain is RP14 (=KACC 22720=TBRC 16341).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006086
2023-10-06
2024-06-16
Loading full text...

Full text loading...

References

  1. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997; 47:895–898 [View Article]
    [Google Scholar]
  2. Jarvis BDW, Pankhurst CE, Patel JJ. Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 1982; 32:378–380 [View Article]
    [Google Scholar]
  3. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  4. de Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol 2016; 66:786–795
    [Google Scholar]
  5. Nandasena KG, O’Hara GW, Tiwari RP, Willems A, Howieson JG. Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 2009; 59:2140–2147 [View Article] [PubMed]
    [Google Scholar]
  6. Pedron R, Luchi E, Albiac MA, Di Cagno R, Catorci D et al. Mesorhizobium comanense sp. nov., isolated from groundwater. Int J Syst Evol Microbiol 2021; 71:005131 [View Article] [PubMed]
    [Google Scholar]
  7. Han TX, Han LL, Wu LJ, Chen WF, Sui XH et al. Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 2008; 58:2610–2618 [View Article] [PubMed]
    [Google Scholar]
  8. Gao J-L, Turner SL, Kan FL, Wang ET, Tan ZY et al. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 2004; 54:2003–2012 [View Article] [PubMed]
    [Google Scholar]
  9. Fu G-Y, Yu X-Y, Zhang C-Y, Zhao Z, Wu D et al. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:2739–2745 [View Article] [PubMed]
    [Google Scholar]
  10. Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH. Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 2011; 61:574–579 [View Article] [PubMed]
    [Google Scholar]
  11. Marcos-García M, Menéndez E, Ramírez-Bahena MH, Mateos PF, Peix Á et al. Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. Int J Syst Evol Microbiol 2017; 67:2301–2305 [View Article] [PubMed]
    [Google Scholar]
  12. Zhou PF, Chen WM, Wei GH. Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 2010; 60:2552–2556 [View Article] [PubMed]
    [Google Scholar]
  13. Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2–17 [View Article] [PubMed]
    [Google Scholar]
  14. Rascio N, La Rocca N. Biological nitrogen fixation. Encycl Ecol Five-Volume Set 2008412–419
    [Google Scholar]
  15. Lee JH, Choung MG. Identification and characterisation of anthocyanins in the antioxidant activity-containing fraction of Liriope platyphylla fruits. Food Chem 2011; 127:1686–1693 [View Article]
    [Google Scholar]
  16. Kim HK, Lee JY, Han H-S, Kim Y-J, Kim HJ et al. Immunomodulatory effects of Liriope platyphylla water extract on lipopolysaccharide-activated mouse macrophage. Nutrients 2012; 4:1887–1897 [View Article] [PubMed]
    [Google Scholar]
  17. Huang T-J, Tsai Y-C, Chiang S-Y, Wang G-J, Kuo Y-C et al. Anti-viral effect of a compound isolated from Liriope platyphylla against hepatitis B virus in vitro. Virus Res 2014; 192:16–24 [View Article] [PubMed]
    [Google Scholar]
  18. Huang S, Wei L, Wang H. Dyeing and antibacterial properties of Liriope platyphylla fruit extracts on silk fabrics. Fibers Polym 2017; 18:758–766 [View Article]
    [Google Scholar]
  19. Lee Y-C, Lee J-C, Seo Y-B, Kook Y-B. Liriopis tuber inhibit OVA-induced airway inflammation and bronchial hyperresponsiveness in murine model of asthma. J Ethnopharmacol 2005; 101:144–152 [View Article] [PubMed]
    [Google Scholar]
  20. Kim I, Chhetri G, Kim J, Kang M, Seo T. Lewinella aurantiaca sp. nov., a carotenoid pigment-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:6180–6187 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  33. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe 2014111–118 [View Article]
    [Google Scholar]
  34. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  35. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  36. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  37. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  40. Mahmud K, Makaju S, Ibrahim R, Missaoui A. Current progress in nitrogen fixing plants and microbiome research. Plants 2020; 9:97 [View Article] [PubMed]
    [Google Scholar]
  41. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  42. Smibert RM, Krieg NR. Phenotypic characterization. In Grehardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: ASM Press; 1994 pp 607–654
    [Google Scholar]
  43. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  44. Kim I, Chhetri G, Kim J, Kang M, Seo T. Reinekea thalattae sp. nov., a new species of the genus Reinekea isolated from surface seawater in Sehwa Beach. Curr Microbiol 2020; 77:4174–4179 [View Article] [PubMed]
    [Google Scholar]
  45. Jimtha JC, Smitha PV, Anisha C, Deepthi T, Meekha G et al. Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell Tiss Organ Cult 2014; 118:57–66 [View Article]
    [Google Scholar]
  46. K Komagata KS. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–205
    [Google Scholar]
  47. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  48. Ruan Z-P, Cao W-M, Zhang X, Liu J-T-Y, Zhu J-C et al. Rhizobium terrae sp. nov., Isolated from an oil-contaminated soil in China. Curr Microbiol 2020; 77:1117–1124 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006086
Loading
/content/journal/ijsem/10.1099/ijsem.0.006086
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error