1887

Abstract

A novel Gram-stain-positive bacterium, designated NB10, was isolated from the gut of . The isolate was rod-shaped, aerobic, non-motile and non-spore-forming. Colonies of strain NB10 were light yellow, circular and smooth. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that the isolate was related to the genu. Its closest relatives were T14 (97.8 % 16S rRNA gene sequence similarity), CC-MF41 (97.0%) and M1-8 (96.4%). The DNA G+C content of strain NB10 was 68.8 mol%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization values among strain NB10 and the selected species were ≤83.8 % (ANI-), 87.6 % (ANI-MUMmer) and 29.6%, which were below the recommended cutoff values for species delineation. The predominant cellular fatty acids were anteiso-C (39.0%), anteiso-C (35.5%) and iso-C (17.0%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipids. The predominant respiratory quinones were MK-11 and MK-10. The cell wall amino acids were Gly, Glu, Tr, Ala, and DAB. Based on these phylogenetic and phenotypic results, strain NB10 can be clearly distinguished from all of the recognized species of the genus and is considered to represent a novel species of that genus. The name sp. nov. is proposed, with the type strain NB10 (=MCCC 1K07072=KCTC 49728).

Funding
This study was supported by the:
  • Inner Mongolia Natural Science Fund Project (Award 2020MS03057)
    • Principle Award Recipient: XiaoshuanBai
  • Inner Mongolia Science Technology project plan (Award 2020GG0039)
    • Principle Award Recipient: BoYuan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006081
2023-10-12
2024-05-08
Loading full text...

Full text loading...

References

  1. Takeuchi M, Weiss N, Schumann P, Yokota A. Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:967–971 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  3. Weon H-Y, Anandham R, Tamura T, Hamada M, Kim S-J et al. Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 2012; 50:161–165 [View Article] [PubMed]
    [Google Scholar]
  4. Chun BH, Lee HJ, Jeong SE, Schumann P, Jeon CO. Leucobacter ruminantium sp. nov., isolated from the bovine rumen. Int J Syst Evol Microbiol 2017; 67:2634–2639 [View Article]
    [Google Scholar]
  5. Benga L, Spröer C, Schumann P, Verbarg S, Bunk B et al. Leucobacter muris sp. nov., isolated from the nose of a laboratory mouse. Int J Syst Evol Microbiol 2019; 69:2095–2100 [View Article] [PubMed]
    [Google Scholar]
  6. Hyun DW, Sung H, Kim PS, Yun JH, Bae JW. Leucobacter coleopterorum sp nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter. J Microbiol 2021; 59:360–368 [View Article] [PubMed]
    [Google Scholar]
  7. Kim HJ, Lee SS. Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 2011; 49:1044–1049 [View Article] [PubMed]
    [Google Scholar]
  8. Schumann P, Pukall R. Leucobacter weissii sp. nov., an isolate from activated sludge once described as first representative of the peptidoglycan variation B2δ, and emended description of the genus Leucobacter. Int J Syst Evol Microbiol 2017; 67:5244–5251 [View Article]
    [Google Scholar]
  9. Sun L-N, Pan D-D, Wu X-W, Yang E-D, Hua R-M et al. Leucobacter triazinivorans sp. nov., a s-triazine herbicide prometryn-degrading bacterium isolated from sludge. Int J Syst Evol Microbiol 2018; 68:204–210 [View Article] [PubMed]
    [Google Scholar]
  10. Morais PV, Paulo C, Francisco R, Branco R, Paula Chung A et al. Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 2006; 29:414–421 [View Article] [PubMed]
    [Google Scholar]
  11. Martin E, Lodders N, Jäckel U, Schumann P, Kämpfer P. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 2010; 60:2838–2842 [View Article] [PubMed]
    [Google Scholar]
  12. Ue H. Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 2011; 57:27–33 [View Article] [PubMed]
    [Google Scholar]
  13. Lin Y-C, Uemori K, de Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 2004; 54:1669–1676 [View Article] [PubMed]
    [Google Scholar]
  14. Sturm G, Jacobs J, Spröer C, Schumann P, Gescher J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 2011; 61:956–960 [View Article] [PubMed]
    [Google Scholar]
  15. Her J, Lee SS. Leucobacter humi sp. nov., isolated from forest soil. Curr Microbiol 2015; 71:235–242 [View Article] [PubMed]
    [Google Scholar]
  16. Fang W, Li X, Tan X-M, Wang L-F, Piao C-G et al. Leucobacter populi sp. nov. isolated from a symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 2016; 66:2254–2258 [View Article] [PubMed]
    [Google Scholar]
  17. Li Y, Fang W, Xie S, Yang X, Wang L. Leucobacter corticis sp. nov., isolated from symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 2017; 67:2248–2252 [View Article]
    [Google Scholar]
  18. Clark LC, Hodgkin J. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. Int J Syst Evol Microbiol 2015; 65:3977–3984 [View Article] [PubMed]
    [Google Scholar]
  19. Lee JH, Lee SS. Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 2012; 64:441–448 [View Article] [PubMed]
    [Google Scholar]
  20. Lai W-A, Lin S-Y, Hameed A, Hsu Y-H, Liu Y-C et al. Leucobacter zeae sp. nov., isolated from the rhizosphere of maize (Zea mays L.). Int J Syst Evol Microbiol 2015; 65:4734–4742 [View Article] [PubMed]
    [Google Scholar]
  21. Behrendt U, Ulrich A, Schumann P. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 2008; 58:2574–2578 [View Article] [PubMed]
    [Google Scholar]
  22. Shin N-R, Kim M-S, Jung M-J, Roh SW, Nam Y-D et al. Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 2011; 61:2353–2357 [View Article] [PubMed]
    [Google Scholar]
  23. Yun J-H, Roh SW, Kim M-S, Jung M-J, Park E-J et al. Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 2011; 61:502–506 [View Article] [PubMed]
    [Google Scholar]
  24. Zhu D, Zhang P, Li P, Wu J, Xie C et al. Description of Leucobacter holotrichiae sp. nov., isolated from the gut of Holotrichia oblita larvae. Int J Syst Evol Microbiol 2016; 66:1857–1861 [View Article]
    [Google Scholar]
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  30. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  31. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  33. Ruan Z, Wang Y, Song J, Jiang S, Wang H et al. Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 2014; 64:518–521 [View Article] [PubMed]
    [Google Scholar]
  34. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article] [PubMed]
    [Google Scholar]
  35. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  36. Han S-B, Su Y, Hu J, Wang R-J, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016; 66:1807–1812 [View Article] [PubMed]
    [Google Scholar]
  37. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article] [PubMed]
    [Google Scholar]
  38. Kates M. Techniques of Lipidology. 2nd edn rev Amsterdam: Elsevier; 1986 pp 241–246
    [Google Scholar]
  39. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  41. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  42. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006081
Loading
/content/journal/ijsem/10.1099/ijsem.0.006081
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error