1887

Abstract

A Gram-staining-positive, motile, aerobic and rod-shaped bacterium, designated strain MA9 was isolated from wetland soil of ecology park, in Seoul, Republic of Korea. This bacterium was characterized to determine its taxonomic position by using the polyphasic approach. Strain MA9 grew at 10–37 °C and at pH 6.0–9.5 on TSB. Menaquinone MK-7 was the predominant respiratory quinone and iso-C, iso-C and C c alcohol were the major fatty acids. The main polar lipids were phosphatidylethanolamine (PE), phosphatidylserine (PS), diphosphatidylglycerol (DPG) and phosphatidylglycerol (PG). The peptidoglycan type of the cell wall was A4α -Lys--Glu. Based on 16S rRNA gene sequencing, strain MA9 clustered with species of the genus and appeared closely related to DSM 12223 (97.8 % sequence similarity), DSM 21993 (97.6 %), DSM 21046 (97.6 %) and DSM 101595 (96.6 %). The G+C content of the genomic DNA was 37.0 mol%. Digital DNA–DNA hybridization between strain MA9 and type strains of , , and resulted in values below 70 %. Strain MA9 could be differentiated genotypically and phenotypically from the recognized species of the genus . The isolate therefore represents a novel species, for which the name sp. nov. is proposed, with the type strain MA9 (=KACC 22212 = LMG 32188)

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology
    • Principle Award Recipient: Wan-TaekIm
  • National Institute of Biological Resources
    • Principle Award Recipient: Wan-TaekIm
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006065
2024-02-07
2024-05-18
Loading full text...

Full text loading...

References

  1. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991; 13:202–206 [View Article]
    [Google Scholar]
  2. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH et al. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 2001; 51:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  3. Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 2007; 57:1117–1125 [View Article] [PubMed]
    [Google Scholar]
  4. Krishnamurthi S, Ruckmani A, Pukall R, Chakrabarti T. Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov. Syst Appl Microbiol 2010; 33:367–373 [View Article] [PubMed]
    [Google Scholar]
  5. Albert RA, Archambault J, Lempa M, Hurst B, Richardson C et al. Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 2007; 57:2729–2737 [View Article] [PubMed]
    [Google Scholar]
  6. Krishnamurthi S, Chakrabarti T, Stackebrandt E. Re-examination of the taxonomic position of Bacillus silvestris Rheims et al. 1999 and proposal to transfer it to Solibacillus gen. nov. as Solibacillus silvestris comb. nov. Int J Syst Evol Microbiol 2009; 59:1054–1058 [View Article] [PubMed]
    [Google Scholar]
  7. Mual P, Singh NK, Verma A, Schumann P, Krishnamurthi S et al. Reclassification of Bacillus isronensis Shivaji et al. 2009 as Solibacillus isronensis comb. nov. and emended description of genus Solibacillus Krishnamurthi et al. 2009. Int J Syst Evol Microbiol 2016; 66:2113–2120 [View Article] [PubMed]
    [Google Scholar]
  8. Reddy GSN, Uttam A, Shivaji S. Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int J Syst Evol Microbiol 2008; 58:2330–2335 [View Article] [PubMed]
    [Google Scholar]
  9. Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R et al. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 2009; 59:2977–2986 [View Article] [PubMed]
    [Google Scholar]
  10. Checinska Sielaff A, Kumar RM, Pal D, Mayilraj S, Venkateswaran K. Solibacillus kalamii sp. nov., isolated from a high-efficiency particulate arrestance filter system used in the International Space Station. Int J Syst Evol Microbiol 2017; 67:896–901 [View Article]
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  14. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  21. Kimura M. The Neutral Theory of Molecular Evolution Cambridge:Cambridge Universite Press; 1983 [View Article]
    [Google Scholar]
  22. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  23. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  26. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  28. Li F-N, Liao S-L, Liu S-W, Jin T, Sun C-H. Aeromicrobium endophyticum sp. nov., an endophytic actinobacterium isolated from reed (Phragmites australis). J Microbiol 2019; 57:725–731 [View Article] [PubMed]
    [Google Scholar]
  29. Krebs JE, Gale AN, Sontag TC, Keyser VK, Peluso EM et al. A web-based method to calculate average amino acid identity (AAI) between Prokaryotic Genomes. Biotechniques 2013
    [Google Scholar]
  30. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article]
    [Google Scholar]
  31. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  32. Perry LB. Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol 1973; 36:227–232 [View Article] [PubMed]
    [Google Scholar]
  33. Weon H-Y, Kim B-Y, Joa J-H, Son J-A, Song M-H et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008; 58:93–96 [View Article] [PubMed]
    [Google Scholar]
  34. Cappuccino JG, Sherman N. A Laboratory Manual. 6th edn Benjamin Cummings, CA: Pearson Education, Inc; 2002
    [Google Scholar]
  35. Atlas RM. Handbook of Microbiological Media Boca Raton, Florida, USA: CRC Press; 1993
    [Google Scholar]
  36. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  37. Sasser M. Identification of bacteria through fatty acid analysis. Methods in Phytobacteriol 1990; 565:199–204
    [Google Scholar]
  38. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  39. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006065
Loading
/content/journal/ijsem/10.1099/ijsem.0.006065
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error