1887

Abstract

A facultative anaerobic, Gram-strain-negative, rod-shaped bacterium (strain NBU2970) was isolated by using modified ichip cultivation from a marine sediment sample collected from Meishan Island in the East China Sea. Strain NBU2970 grew optimally at 37 °C, with a NaCl concentration of 2.0 % (w/v) and at pH 7.0. The 16S rRNA gene sequence analyses revealed that strain NBU2970 represents a novel species with the genus , sharing highest sequence identities with BB-My12 (96.1 %), SCR12 (96.0 %), 105 (96.0 %) and B1 (95.6 %). Phylogenetic analyses also indicated that strain NBU2970 clustered with the genus and was closely related to BB-My12 and B1. The draft genome sequence of strain NBU2970 was composed of six contigs with a size of 3.2 Mbp, containing 3045 protein-coding genes and 38 RNA genes. The DNA G+C content was 43.8 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain NBU2970 and related species of the genus were well below the threshold limit for prokaryotic species delineation. The major cellular fatty acids were iso-C, iso-C G and iso-C 3-OH. The only respiratory quinone was MK-6. The major polar lipid was phosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and genotypic data, strain NBU2970 is considered to be a representative of a novel species in the genus , for which the name sp. nov. is proposed. The type strain is NBU2970 (=KCTC 82915=MCCC 1K06394).

Funding
This study was supported by the:
  • Natural Science Foundation of Zhejiang Province (Award LGF22C010001)
  • National Natural Science Foundation of China (Award 32100001)
    • Principle Award Recipient: ZhangWeiyan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006059
2023-09-26
2024-05-01
Loading full text...

Full text loading...

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  2. Lee S-Y, Park S, Oh T-K, Yoon J-H. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [View Article] [PubMed]
    [Google Scholar]
  3. Dong BX, Zhu SD, Chen T, Ren N, Chen XN et al. Muricauda oceani sp. nov., isolated from the East Pacific ocean. Int J Syst Evol Microbiol 2020; 70:3839–3844 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang XR, Liu XP, Lai QL, Du YP, Sun FQ et al. Muricauda indica sp. nov., isolated from deep sea water. Int J Syst Evol Microbiol 2018; 68:881–885 [View Article] [PubMed]
    [Google Scholar]
  5. Chen M-X, He X-Y, Li H-Y. Muricauda chongwuensis sp. nov., isolated from coastal seawater of China. Arch Microbiol 2021; 203:6245–6252 [View Article] [PubMed]
    [Google Scholar]
  6. Liu LJ, Yu M, Zhou S, Fu TY, Sun W et al. Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:1666–1671 [View Article] [PubMed]
    [Google Scholar]
  7. Park JS. Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium. Int J Syst Evol Microbiol 2019; 69:3800–3805 [View Article]
    [Google Scholar]
  8. Yang CY, Li Y, Guo Q, Lai QL, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2320–2325 [View Article] [PubMed]
    [Google Scholar]
  9. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2009; 59:1856–1861 [View Article] [PubMed]
    [Google Scholar]
  10. Arun AB, Chen W-M, Lai W-A, Chao J-H, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59:2738–2742 [View Article] [PubMed]
    [Google Scholar]
  11. Wu Y-H, Yu P-S, Zhou Y-D, Xu L, Wang C-S et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013; 63:3451–3456 [View Article] [PubMed]
    [Google Scholar]
  12. Vizzotto CS, Peixoto J, Green SJ, Lopes FAC, Ramada MHS et al. Muricauda brasiliensis sp. nov., isolated from a mat-forming cyanobacterial culture. Braz J Microbiol 2021; 52:325–333 [View Article] [PubMed]
    [Google Scholar]
  13. Wang Y, Yang X, Liu J, Wu Y, Zhang X-H. Muricauda lutea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1064–1069 [View Article] [PubMed]
    [Google Scholar]
  14. Su Y, Yang X, Wang Y, Liu Y, Ren Q et al. Muricauda marina sp. nov., isolated from marine snow of Yellow Sea. Int J Syst Evol Microbiol 2017; 67:2446–2451 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon J-H, Lee M-H, Oh T-K, Park Y-H. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005; 55:1015–1019 [View Article] [PubMed]
    [Google Scholar]
  16. Berdy B, Spoering AL, Ling LL, Epstein SS. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat Protoc 2017; 12:2232–2242 [View Article] [PubMed]
    [Google Scholar]
  17. Sun C, Wu C, Su Y, Wang R-J, Fu G-Y et al. Hyphococcus flavus gen. nov., sp. nov., a novel alphaproteobacterium isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:4024–4031 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Zhang WY, Zhu ST, Cheng YP, Ding LJ, Li SY et al. Rheinheimera mangrovi sp. nov., a bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2020; 70:6188–6194 [View Article] [PubMed]
    [Google Scholar]
  25. Li RQ, Li YR, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  26. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  27. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–W57 [View Article] [PubMed]
    [Google Scholar]
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article] [PubMed]
    [Google Scholar]
  29. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:1–14 [View Article] [PubMed]
    [Google Scholar]
  30. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–W9 [View Article] [PubMed]
    [Google Scholar]
  31. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  32. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  36. Dong XZ, Cai MY. Determinative Manual For Routine Bacteriology, 1st. edn Beijing: Scientific Press; 2001 pp 353–364
    [Google Scholar]
  37. Zhu XF, Jia XM, Zhang XQ, Wu YH, Chen ZY. Modern Experimental Technique of Microbiology Zhejiang University Press, Hangzhou English translation; 2011
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Mol Evol 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Kates M. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, 2nd. edn Amsterdam: Elsevier; 1986
    [Google Scholar]
  40. Zhang X-Q, Sun C, Wang C-S, Zhang X, Zhou X et al. Sinimarinibacterium flocculans gen. nov., sp. nov., a gammaproteobacterium from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:3541–3546 [View Article] [PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006059
Loading
/content/journal/ijsem/10.1099/ijsem.0.006059
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error