1887

Abstract

A novel, anaerobic, Gram-stain-positive coccoid strain, CBA3646, was isolated from the faeces of a thoroughbred racehorse. Phylogenetic analysis based on 16S rRNA gene sequencing yielded results indicative of CBA3646 representing a member of the genus , with the species most closely related to it being DSM 20463, with a similarity of 94.79 %. DNA–DNA relatedness and average nucleotide identity values between CBA3646 and DSM 20463 were 21.4 and 67.6 %, respectively. CBA3646 has a circular chromosomal genome of 1 709 189 bp (45.5 mol% DNA G+C content), containing 1652 genes in total, 1584 predicted protein-coding genes, 3 complete rRNA loci and 47 tRNA genes. The cells were non-motile diplococci, catalase-positive and oxidase-negative. Growth of CBA3646 was observed at 20–40 °C (optimal temperature, 35 °C) and in the presence of 0–4 % (w/v) NaCl (optimum concentration, 1 %). The major fatty acids (>10 %) of CBA3646 were C, Cω9 and Cω9 dimethyl acetal, with its major polar lipids being diphosphatidylglycerol and phosphatidylglycerol. The elucidated phylogenetic, physiological, chemotaxonomic and molecular properties are indicative of strain CBA3646 representing a novel species of the genus , or which the name sp. nov. is proposed. The type strain is CBA3646 (= KACC 22890 = JCM 35845).

Funding
This study was supported by the:
  • World Institute of Kimchi (Award KE2301-1-1)
    • Principle Award Recipient: TaeWoong Whon
  • National Research Foundation of Korea (NRF) (Award 2021R1C1C1013859)
    • Principle Award Recipient: SeHee Lee
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006053
2023-09-26
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/9/ijsem006053.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006053&mimeType=html&fmt=ahah

References

  1. Lee W-J, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol 2014; 10:416–424 [View Article] [PubMed]
    [Google Scholar]
  2. Garber A, Hastie P, Murray JA. Factors influencing equine gut microbiota: current knowledge. J Equine Vet Sci 2020; 88:102943 [View Article] [PubMed]
    [Google Scholar]
  3. Kristoffersen C, Jensen RB, Avershina E, Austbø D, Tauson A-H et al. Diet-dependent modular dynamic interactions of the equine cecal microbiota. Microbes Environ 2016; 31:378–386 [View Article] [PubMed]
    [Google Scholar]
  4. Barr BS, Waldridge BM, Morresey PR, Reed SM, Clark C et al. Antimicrobial-associated diarrhoea in three equine referral practices. Equine Vet J 2013; 45:154–158 [View Article] [PubMed]
    [Google Scholar]
  5. Perry E, Cross T-W, Francis JM, Holscher HD, Clark SD et al. Effect of road transport on the equine cecal microbiota. J Equine Vet Sci 2018; 68:12–20 [View Article] [PubMed]
    [Google Scholar]
  6. Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y et al. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 2020; 10:8311 [View Article] [PubMed]
    [Google Scholar]
  7. Enault C, Aujoulat F, Pantel A, Cellier N, Lechiche C et al. Surgical site infection after hip replacement due to a novel Peptoniphilus species, provisionally named “Peptoniphilus nemausus” sp. nov.. Anaerobe 2020; 61:102071 [View Article] [PubMed]
    [Google Scholar]
  8. Murphy EC, Frick I-M. Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol Rev 2013; 37:520–553 [View Article] [PubMed]
    [Google Scholar]
  9. Nagase S, Ogai K, Urai T, Shibata K, Matsubara E et al. Distinct skin microbiome and skin physiological functions between bedridden older patients and healthy people: a single-center study in Japan. Front Med 2020; 7:101 [View Article] [PubMed]
    [Google Scholar]
  10. Min KR, Galvis A, Baquerizo Nole KL, Sinha R, Clarke J et al. Association between baseline abundance of Peptoniphilus, a Gram-positive anaerobic coccus, and wound healing outcomes of DFUs. PLoS One 2020; 15:e0227006 [View Article] [PubMed]
    [Google Scholar]
  11. Müller-Schulte E, Heimann KC, Treder W. Peptoniphilus asaccharolyticus - commensal, pathogen or synergist? Two case reports on invasive Peptoniphilus asaccharolyticus infection. Anaerobe 2019; 59:159–162 [View Article] [PubMed]
    [Google Scholar]
  12. Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L et al. Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 2001; 51:1521–1528 [View Article] [PubMed]
    [Google Scholar]
  13. Mbaye B, Lo CI, Dione N, Benabdelkader S, Alou MT et al. Peptoniphilus coli sp. nov. and Peptoniphilus urinae sp. nov., isolated from humans. Arch Microbiol 2022; 204:1–7 [View Article] [PubMed]
    [Google Scholar]
  14. Cho E, Park S-N, Shin Y, Lim YK, Paek J et al. Peptoniphilus mikwangii sp. nov., isolated from a clinical specimen of human origin. Curr Microbiol 2015; 70:260–266 [View Article] [PubMed]
    [Google Scholar]
  15. Aujoulat F, Mazuet C, Criscuolo A, Popoff MR, Enault C et al. Peptoniphilus nemausensis sp. nov. a new Gram-positive anaerobic coccus isolated from human clinical samples, an emendated description of the genus Peptoniphilus and an evaluation of the taxonomic status of Peptoniphilus species with not validly published names. Syst Appl Microbiol 2021; 44:126235 [View Article] [PubMed]
    [Google Scholar]
  16. Jung MY, Cho JH, Shin Y, Paek J, Park I-S et al. Peptoniphilus rhinitidis sp. nov., isolated from specimens of chronic rhinosinusitis. Anaerobe 2014; 30:30–34 [View Article] [PubMed]
    [Google Scholar]
  17. Ryu SW, Kim J-S, Oh BS, Yu SY, Lee J-S et al. Peptoniphilus faecalis sp. nov., isolated from swine faeces. Int J Syst Evol Microbiol 2021; 71:004836 [View Article] [PubMed]
    [Google Scholar]
  18. Johnson CN, Whitehead TR, Cotta MA, Rhoades RE, Lawson PA. Peptoniphilus stercorisuis sp. nov., isolated from a swine manure storage tank and description of Peptoniphilaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:3538–3545 [View Article] [PubMed]
    [Google Scholar]
  19. Song Y, Liu C, Finegold SM. Peptoniphilus gorbachii sp. nov., Peptoniphilus olsenii sp. nov., and Anaerococcus murdochii sp. nov. isolated from clinical specimens of human origin. J Clin Microbiol 2007; 45:1746–1752 [View Article] [PubMed]
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA Sequencing New York: John Wiley & Sons; 1991
    [Google Scholar]
  21. Kim YB, Kim JY, Kim J, Song HS, Whon TW et al. Aminipila terrae sp. nov., a strictly anaerobic bacterium isolated from river sediment. Arch Microbiol 2021; 203:3163–3169 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; 2: [View Article] [PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  26. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  27. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  30. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  31. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  32. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Shields P, Cathcart L. Oxidase test protocol. Am Soc Microbiol 20101–9
    [Google Scholar]
  36. Whittenbury R. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. Microbiology 1964; 35:13–26 [View Article] [PubMed]
    [Google Scholar]
  37. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1988; 19:161–207 [View Article]
    [Google Scholar]
  39. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  41. Ulger-Toprak N, Lawson PA, Summanen P, O’Neal L, Finegold SM. Peptoniphilus duerdenii sp. nov. and Peptoniphilus koenoeneniae sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 2012; 62:2336–2341 [View Article] [PubMed]
    [Google Scholar]
  42. Aujoulat F, Mazuet C, Criscuolo A, Popoff MR, Enault C et al. Peptoniphilus nemausensis sp. nov. a new Gram-positive anaerobic coccus isolated from human clinical samples, an emendated description of the genus Peptoniphilus and an evaluation of the taxonomic status of Peptoniphilus species with not validly published names. Syst Appl Microbiol 2021; 44:126235 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006053
Loading
/content/journal/ijsem/10.1099/ijsem.0.006053
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error