1887

Abstract

Four Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped, motile endophytic bacterial strains, designated NM3R9, NE1TT3, NE2TL11 and NE2HP2, were isolated from the inner tissues (leaf and stem) of and roots of . They were characterized using a polyphasic approach, which revealed that they represent two novel species. Phylogenetic analysis based on 16S rRNA gene sequencing showed that the species closest to NE2HP2 was DSM 20754 (99.6 %) and that closest to NM3R9, NE2TL11 and NE2TT3 was NBRC 103075 (97.4 %). The whole-genome average nucleotide identity value between strain NM3R9 and DSM 20530 was 90.91 %, and that between strain NE2HP2 and DSM 20754 was 91.03 %. Digital DNA–DNA hybridization showed values of less than 70 % with the type strains of related species. The polar lipids present in both strains included diphosphatidylglycerol, phosphatidylglycerol, glycolipids and unidentified lipids, whereas the major fatty acids included anteiso-C, anteiso-C, iso-C and C. Whole-cell sugars included mannose, rhamnose and galactose. Strains NM3R9 and NE2HP2 showed physiological characteristics different from those present in closely related species. According to the taxonomic analysis, both strains belong to two novel species. The name sp. nov. is proposed for strain NE2HP2 (=LMG 30875=CCBAU 101117) and sp. nov. for strains NM3R9 (=LMG 30873=CCBAU 101116), NE1TT3 (=CCBAU 101114) and NE2TL11 (=CCBAU 101115).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006052
2023-09-27
2024-05-09
Loading full text...

Full text loading...

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Andreas Fredrick Host and Son; Copenhagen, Denmark: 1919
    [Google Scholar]
  2. Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A. Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2016; 66:4492–4500 [View Article] [PubMed]
    [Google Scholar]
  3. Srinivasan S, Kim MK, Sathiyaraj G, Kim Y-J, Jung S-K et al. Microbacterium soli sp. nov., an alpha-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010; 60:478–483 [View Article] [PubMed]
    [Google Scholar]
  4. Peng S, Dongying L, Bingxin Y, Mingjun L, Gehong W. Microbacterium shaanxiense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 2015; 65:1437–1443 [View Article] [PubMed]
    [Google Scholar]
  5. Nguyen NL, Kim YJ, Hoang VA, Min JW, Hwang KH et al. Microbacterium panaciterrae sp. nov., isolated from the rhizosphere of ginseng. Int J Syst Evol Microbiol 2015; 65:927–933 [View Article]
    [Google Scholar]
  6. Zlamala C, Schumann P, Kämpfer P, Valens M, Rosselló-Mora R et al. Microbacterium aerolatum sp. nov., isolated from the air in the “Virgilkapelle” in Vienna. Int J Syst Evol Microbiol 2002; 52:1229–1234 [View Article] [PubMed]
    [Google Scholar]
  7. Yu L, Lai Q, Yi Z, Zhang L, Huang Y et al. Microbacterium sediminis sp. nov., a psychrotolerant, thermotolerant, halotolerant and alkalitolerant actinomycete isolated from deep-sea sediment. Int J Syst Evol Microbiol 2013; 63:25–30 [View Article] [PubMed]
    [Google Scholar]
  8. Clermont D, Diard S, Bouchier C, Vivier C, Bimet F et al. Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2009; 59:1016–1022 [View Article] [PubMed]
    [Google Scholar]
  9. Rahi P, Kurli R, Pansare AN, Khairnar M, Jagtap S et al. Microbacterium telephonicum sp. nov., isolated from the screen of a cellular phone. Int J Syst Evol Microbiol 2018; 68:1052–1058 [View Article] [PubMed]
    [Google Scholar]
  10. Tapia-García EY, Hernández-Trejo V, Guevara-Luna J, Rojas-Rojas FU, Arroyo-Herrera I et al. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiol Res 2020; 239:126522 [View Article] [PubMed]
    [Google Scholar]
  11. González-Valdez E, Alarcón A, Ferrera-Cerrato R, Vega-Carrillo HR, Maldonado-Vega M et al. Seed germination and seedling growth of five plant species for assessing potential strategies to stabilizing or recovering metals from mine tailings. Water Air Soil Pollut 2016; 227:1–10 [View Article]
    [Google Scholar]
  12. Salas-Luévano MA, Mauricio-Castillo JA, González-Rivera ML, Vega-Carrillo HR, Salas-Muñoz S. Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environ Earth Sci 2017; 76:1–12 [View Article]
    [Google Scholar]
  13. Armienta MA, Ongley LK, Cruz O, Mango H, Villaseñor G. Arsenic distribution in mesquite (Prosopis laevigata) and huizache (Acacia farnesiana) in the Zimapán mining area, México. Geochem Explor Environ Anal 2008; 8:191–197
    [Google Scholar]
  14. Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 2010; 101:5862–5867 [View Article] [PubMed]
    [Google Scholar]
  15. Guo H, Luo S, Chen L, Xiao X, Xi Q et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 2010; 101:8599–8605 [View Article] [PubMed]
    [Google Scholar]
  16. Sturz AV, Nowak J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 2000; 15:183–190 [View Article]
    [Google Scholar]
  17. Conn VM, Franco CMM. Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 2004; 70:6407–6413 [View Article] [PubMed]
    [Google Scholar]
  18. Govindasamy V, George P, Kumar M, Aher L, Raina SK et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 2020; 10:13 [View Article] [PubMed]
    [Google Scholar]
  19. Román-Ponce B, Ramos-Garza J, Vásquez-Murrieta MS, Rivera-Orduña FN, Chen WF et al. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Arch Microbiol 2016; 198:941–956 [View Article] [PubMed]
    [Google Scholar]
  20. Franco-Hernández MO, Vásquez-Murrieta MS, Patiño-Siciliano A, Dendooven L. Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour Technol 2010; 101:3864–3869 [View Article] [PubMed]
    [Google Scholar]
  21. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 2004; 70:2667–2677 [View Article] [PubMed]
    [Google Scholar]
  22. Román-Ponce B, Reza-Vázquez DM, Gutiérrez-Paredes S, de Haro-Cruz M de J, Maldonado-Hernández J et al. Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 2017; 27:511–526 [View Article]
    [Google Scholar]
  23. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987; 57:267–272 [View Article] [PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematic New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  26. Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 1996; 12:543–548 [View Article]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  28. Lefort V, Longueville JE, Gascuel O. SMS: smart Model Selection in PhyML. Mol Biol Evol 2017; 34:2422–2424 [View Article] [PubMed]
    [Google Scholar]
  29. Guindon S, Lethiec F, Duroux P, Gascuel O. PHYML Online--A web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 2005; 33:W557–9 [View Article] [PubMed]
    [Google Scholar]
  30. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 1986; 17:57–86
    [Google Scholar]
  31. Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 2003; 4:1–4 [View Article] [PubMed]
    [Google Scholar]
  32. Stackebrand E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  33. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  34. Krueger F. TrimGalore: a wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data; 2021
  35. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  41. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  42. Muñoz-Ramírez ZY, Mendez-Tenorio A, Kato I, Bravo MM, Rizzato C et al. Whole genome sequence and phylogenetic analysis show Helicobacter pylori strains from Latin America have followed a unique evolution pathway. Front Cell Infect Microbiol 2017; 7:50 [View Article] [PubMed]
    [Google Scholar]
  43. Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P et al. Bergey’s manual of systematics of archaea and bacteria. In Whitman WB. eds Hoboken, NJ: Wiley; 2015
  44. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013; 2:587 [View Article] [PubMed]
    [Google Scholar]
  45. Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA et al. Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 2018; 9:2473 [View Article] [PubMed]
    [Google Scholar]
  46. Firrincieli A, Presentato A, Favoino G, Marabottini R, Allevato E et al. Identification of resistance genes and response to arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol 2019; 10:888 [View Article] [PubMed]
    [Google Scholar]
  47. Li Y, Sun Z-Z, Rong J-C, Xie B-B. Comparative genomics reveals broad genetic diversity, extensive recombination and nascent ecological adaptation in Micrococcus luteus. BMC Genomics 2021; 22:1–14 [View Article]
    [Google Scholar]
  48. Arroyo-Herrera I, Román-Ponce B, Bustamante-Brito R, Guevara-Luna J, Tapia-García EY et al. Arsenic and chromium resistance mechanisms in the Micrococcus luteus group. Pedosphere 2023; 33:600–611 [View Article]
    [Google Scholar]
  49. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  50. Pridham TG, Lyons AJ. Streptomyces albus (Rossi-Doria) Waksman et Henrici: taxonomic study of strains labeled Streptomyces albus. J Bacteriol 1961; 81:431–441 [View Article] [PubMed]
    [Google Scholar]
  51. Dox AW. The Intracellular Enzymes of Penicillium and Aspergillus: With Special Reference to Those of Penicillium Camemberti. US Department of Agriculture, Bureau of Animal Industry Washington: Government Printing Office; 1910
    [Google Scholar]
  52. Cowan S, Steel KJ. Manual for the identification of medical bacteria. In Manual for the Identification of Medical Bacteria Cambridge: University Press; 1965
    [Google Scholar]
  53. Hendricks CW, Doyle JD, Hugley B. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microbiol 1995; 61:2016–2019 [View Article] [PubMed]
    [Google Scholar]
  54. Castaneda-Agullo M. Studies on the biosynthesis of extracellular proteases by bacteria. I. Serratia marcescens, synthetic and gelatin media. J Gen Physiol 1956; 39:369–375 [View Article] [PubMed]
    [Google Scholar]
  55. Brown MR, Foster JH. A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol 1970; 23:172–177 [View Article] [PubMed]
    [Google Scholar]
  56. Arroyo-Herrera I, Román-Ponce B, Reséndiz-Martínez AL, Estrada-de Los Santos P, Wang ET et al. Heavy-metal resistance mechanisms developed by bacteria from Lerma-Chapala basin. Arch Microbiol 2021; 203:1807–1823 [View Article] [PubMed]
    [Google Scholar]
  57. Lukasz D, Liwia R, Aleksandra M, Aleksandra S. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization. Biomed Res Int 2014; 2014:841892 [View Article] [PubMed]
    [Google Scholar]
  58. Jain DK, Patriquin DG. Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Can J Microbiol 1985; 31:206–210 [View Article]
    [Google Scholar]
  59. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 1998; 64:2079–2085 [View Article] [PubMed]
    [Google Scholar]
  60. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 1999; 170:265–270 [View Article] [PubMed]
    [Google Scholar]
  61. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [View Article] [PubMed]
    [Google Scholar]
  62. Vences-Guzmán , Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara IM et al. Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 2011; 79:1496–1514 [View Article] [PubMed]
    [Google Scholar]
  63. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  64. Sandoval-Calderón M, Nguyen DD, Kapono CA, Herron P, Dorrestein PC et al. Plasticity of Streptomyces coelicolor membrane composition under different growth conditions and during development. Front Microbiol 2015; 6:1465 [View Article] [PubMed]
    [Google Scholar]
  65. Jarvis RP. Chloroplast research in arabidopsis. In Analysis of Lipid Content and Quality in Arabidopsis Plastids. Chloroplast Research in Arabidopsis Totowa, NJ: Humana Press; 2011 pp 411–426 [View Article]
    [Google Scholar]
  66. Baddiley J, Buchanan JG, Handschumacher RE, Prescott JF. 551. Chemical studies in the biosynthesis of purine nucleotides. Part I. The preparation of n-glycylglycosylamines. J Chem Soc 19562818–2823 [View Article]
    [Google Scholar]
  67. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  68. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI; 1990 pp 1–7
    [Google Scholar]
  69. Suzuki K, Hamada M. Microbacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2015 pp 1–52 [View Article]
    [Google Scholar]
  70. Zhang W, Zhu H-H, Yuan M, Yao Q, Tang R et al. Microbacterium radiodurans sp. nov., a UV radiation-resistant bacterium isolated from soil. Int J Syst Evol Microbiol 2010; 60:2665–2670 [View Article] [PubMed]
    [Google Scholar]
  71. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  72. Kanehisa M, Sato Y. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci 2020; 29:28–35 [View Article] [PubMed]
    [Google Scholar]
  73. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  74. Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013; 29:2869–2876 [View Article] [PubMed]
    [Google Scholar]
  75. Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 1998; 48:739–747 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006052
Loading
/content/journal/ijsem/10.1099/ijsem.0.006052
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error