1887

Abstract

Two rod-shaped, facultative anaerobic, Gram-stain-positive lactic acid bacteria were isolated from corn silage and grass silage. They were characterized using a polyphasic approach and designated as HO 1656 and HO 0673. Analysis of 16S rRNA gene sequence of both strains indicated that they belong to the group. The most closely related species, DSM 20011 and DSM 20178, have digital DNA–DNA hybridization (dDDH) values of 63.9 and 53.4%, respectively, with the novel strains. In contrast, the dDDH value between strains HO 1656 and HO 0673 is 99.3 %, clearly showing that these two isolated strains belong to the same species. According to analysis of the housekeeping genes (, and ), both strains form a distinct cluster within the group. Strains HO 0673 and HO 1656 could produce acid from -arabinose, adonitol, ribose, rhamnose, dulcitol, sorbitol, turanose, -fucose and -arabitol, unlike their nearest phylogenetic neighbour DSM 20011. The major cellular fatty acids of both strains are C and C ω9. The G+C content of the genomic DNA of both strains is 48.0 mol%. Thus, strains HO 1656 and HO 0673 represent a novel species based on their chemotaxonomic, phenotypic and phylogenetic characteristics. The name sp. nov. is proposed with the type strain HO 1656 (=DSM 115425=NCIMB 15466).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006049
2023-10-03
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/10/ijsem006049.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006049&mimeType=html&fmt=ahah

References

  1. Lacticaseibacillus huelsenbergensis sp. novel, isolated from grass silage and corn silage Figshare 2023 https://doi.org/10.6084/m9.figshare.23814852.v1
    [Google Scholar]
  2. Sun ZH, Liu SM, Tayo GO, Tang SX, Tan ZL et al. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Anim Feed Sci Technol 2009; 152:219–231 [View Article]
    [Google Scholar]
  3. Weinberg ZG, Chen Y. Effects of storage period on the composition of whole crop wheat and corn silages. Anim Feed Sci Technol 2013; 185:196–200 [View Article]
    [Google Scholar]
  4. Weinberg ZG, Muck RE. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 1996; 19:53–68 [View Article]
    [Google Scholar]
  5. Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol 2003; 69:562–567 [View Article] [PubMed]
    [Google Scholar]
  6. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  7. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  8. Hill D, Sugrue I, Tobin C, Hill C, Stanton C et al. The Lactobacillus casei group: history and health related applications. Front Microbiol 2018; 9:2107 [View Article] [PubMed]
    [Google Scholar]
  9. Huang C-H, Chen C-C, Liou J-S, Lee A-Y, Blom J et al. Genome-based reclassification of Lactobacillus casei: emended classification and description of the species Lactobacillus zeae. Int J Syst Evol Microbiol 2020; 70:3755–3762 [View Article] [PubMed]
    [Google Scholar]
  10. Huang C-H, Liou J-S, Lee A-Y, Tseng M, Miyashita M et al. Polyphasic characterization of a novel species in the Lactobacillus casei group from cow manure of Taiwan: description of L. chiayiensis sp. nov. Syst Appl Microbiol 2018; 41:270–278 [View Article] [PubMed]
    [Google Scholar]
  11. Bai L, Paek J, Shin Y, Park H-Y, Chang YH. Lacticaseibacillus absianus sp. nov., isolated from the cecum of a mini-pig. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  12. Paek J, Bai L, Shin Y, Kim H, Kook J-K et al. Lacticaseibacillus kribbianus sp. nov., isolated from pig farm faeces dump. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  13. Oki K, Kudo Y, Watanabe K. Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2012; 62:601–607 [View Article] [PubMed]
    [Google Scholar]
  14. Bai L, Paek J, Shin Y, Kim H, Kim SH et al. Lacticaseibacillus parakribbianus sp. nov., isolated from a pig farm faeces dump. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  15. Tohno M, Tanizawa Y, Sawada H, Sakamoto M, Ohkuma M et al. A novel species of lactic acid bacteria, Ligilactobacillus pabuli sp. nov., isolated from alfalfa silage. Int J Syst Evol Microbiol 2022; 72:10 [View Article] [PubMed]
    [Google Scholar]
  16. Kim E, Yang S-M, Cho E-J, Kim H-Y. Novel real-time PCR assay for Lactobacillus casei group species using comparative genomics. Food Microbiol 2020; 90:103485 [View Article] [PubMed]
    [Google Scholar]
  17. Huang C-H, Li S-W, Huang L, Watanabe K. Identification and classification for the Lactobacillus casei group. Front Microbiol 2018; 9:1974 [View Article] [PubMed]
    [Google Scholar]
  18. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article] [PubMed]
    [Google Scholar]
  19. Huang C-H, Lee F-L. The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie van Leeuwenhoek 2011; 99:319–327 [View Article] [PubMed]
    [Google Scholar]
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  26. Zhang HX, Gu CT. Levilactobacillus humaensis sp. nov. and Lapidilactobacillus luobeiensis sp. nov., isolated from traditional Chinese pickle. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Inferring Phylogenies Sinauer Association; 2004
    [Google Scholar]
  28. Masco L, Huys G, Gevers D, Verbrugghen L, Swings J. Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst Appl Microbiol 2003; 26:557–563 [View Article] [PubMed]
    [Google Scholar]
  29. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001; 205:31–36 [View Article] [PubMed]
    [Google Scholar]
  30. Versalovic J, Schneider M, DeBruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  31. Hayford AE, Petersen A, Vogensen FK, Jakobsen M. Use of conserved randomly amplified polymorphic DNA (RAPD) fragments and RAPD pattern for characterization of Lactobacillus fermentum in Ghanaian fermented maize dough. Appl Environ Microbiol 1999; 65:3213–3221 [View Article] [PubMed]
    [Google Scholar]
  32. Tilsala-Timisjärvi A, Alatossava T. Strain-specific identification of probiotic Lactobacillus rhamnosus with randomly amplified polymorphic DNA-derived PCR primers. Appl Environ Microbiol 1998; 64:4816–4819 [View Article] [PubMed]
    [Google Scholar]
  33. Tynkkynen S, Satokari R, Saarela M, Mattila-Sandholm T, Saxelin M. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol 1999; 65:3908–3914 [View Article] [PubMed]
    [Google Scholar]
  34. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  35. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics 2010; 95:315–327 [View Article] [PubMed]
    [Google Scholar]
  36. Oxford Nanopore Technologies Ltd.Nanoporetech/Medaka: sequence correction provided by ONT research
  37. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  38. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  39. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998; 8:195–202 [View Article] [PubMed]
    [Google Scholar]
  40. Tatusova T, DiCucccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  41. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  46. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  48. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  49. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  50. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  51. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  52. Florensa AF, Kaas RS, Clausen P, Aytan-Aktug D, Aarestrup FM. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 2022; 8:000748 [View Article] [PubMed]
    [Google Scholar]
  53. European Food Safety Authority (EFSA) EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J 2021; 19:e06506 [View Article] [PubMed]
    [Google Scholar]
  54. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria. In Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge University Press; 1993 [View Article]
    [Google Scholar]
  55. Zhang W, Lai S, Zhou Z, Yang J, Liu H et al. Screening and evaluation of lactic acid bacteria with probiotic potential from local Holstein raw milk. Front Microbiol 2022; 13:918774 [View Article] [PubMed]
    [Google Scholar]
  56. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P et al. In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 2017; 67:289–301 [View Article]
    [Google Scholar]
  57. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B et al. Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 2006; 16:189–199 [View Article]
    [Google Scholar]
  58. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark: MIDI, Inc;
    [Google Scholar]
  59. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  60. Volokhov DV, Amselle M, Beck BJ, Popham DL, Whittaker P et al. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis). Int J Syst Evol Microbiol 2012; 62:2068–2076 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006049
Loading
/content/journal/ijsem/10.1099/ijsem.0.006049
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error