1887

Abstract

Three novel strains in the genus , designated A3A, C31 and C32, were isolated from mangrove sediment samples. They were facultative anaerobic, Gram-stain-negative, rod-shaped, flagellum-harbouring, oxidase- and catalase-positive, electrogenic and capable of using Fe(III) as an electron acceptor during anaerobic growth. Results of phylogenetic analysis based on 16S rRNA gene and genomic sequences revealed that the strains should be assigned to the genus . The 16S rRNA gene similarity, average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the isolates and their closely related species were below the respective cut-off values for species differentiation. The 16S rRNA gene similarity, ANI and dDDH values between strains C31 and C32 were 99.7, 99.9 and 99.9 %, respectively, indicating that they should belong to the same genospecies. Based on polyphasic taxonomic approach, two novel species are proposed, sp. nov. with type strain A3A (GDMCC 1.2732=JCM 34899) and sp. nov. with type strain C31 (GDMCC 1.2736=JCM 34902).

Funding
This study was supported by the:
  • Natural Science Foundation of Guangdong Province (Award 2023A1515030281)
    • Principle Award Recipient: GuiqinYang
  • Natural Science Foundation of Guangdong Province (Award 2022A1515011734)
    • Principle Award Recipient: LiZhuang
  • National Natural Science Foundation of China (Award 42077211)
    • Principle Award Recipient: LiZhuang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006044
2023-10-12
2024-05-08
Loading full text...

Full text loading...

References

  1. Thatoi H, Behera BC, Mishra RR, Dutta SK. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 2013; 63:1–19 [View Article]
    [Google Scholar]
  2. Allard SM, Costa MT, Bulseco AN, Helfer V, Wilkins LGE et al. Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems 2020; 5:e00658-20 [View Article] [PubMed]
    [Google Scholar]
  3. Mendes LW, Tsai SM. Variations of bacterial community structure and composition in mangrove sediment at different depths in Southeastern Brazil. Diversity 2014; 6:827–843 [View Article]
    [Google Scholar]
  4. Lee L-H, Zainal N, Azman A-S, Eng S-K, Ab Mutalib N-S et al. Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. Int J Syst Evol Microbiol 2014; 64:3297–3306 [View Article] [PubMed]
    [Google Scholar]
  5. Law J-F, Ser H-L, Ab Mutalib N-S, Saokaew S, Duangjai A et al. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:1–18 [View Article] [PubMed]
    [Google Scholar]
  6. Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G et al. Kaustia mangrovi gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed Parvibaculaceae family within the order Rhizobiales. Int J Syst Evol Microbiol 2021; 71:004937 [View Article] [PubMed]
    [Google Scholar]
  7. Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV et al. Shewanella japonica sp. nov. Int J Syst Evol Microbiol 2001; 51:1027–1033 [View Article] [PubMed]
    [Google Scholar]
  8. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME et al. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008; 6:592–603 [View Article] [PubMed]
    [Google Scholar]
  9. Yoon J-H, Park S, Jung Y-T, Lee J-S. Shewanella seohaensis sp. nov., isolated from a tidal flat sediment. Antonie van Leeuwenhoek 2012; 102:149–156 [View Article] [PubMed]
    [Google Scholar]
  10. MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 1985; 6:171–182 [View Article]
    [Google Scholar]
  11. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  12. Hau HH, Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007; 61:237–258 [View Article] [PubMed]
    [Google Scholar]
  13. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 2011; 6:e16649 [View Article] [PubMed]
    [Google Scholar]
  14. Wu Y, Zhu X, Wang X, Lin Z, Reinfelder JR et al. A new electron shuttling pathway mediated by lipophilic phenoxazine via the interaction with periplasmic and inner membrane proteins of Shewanella oneidensis MR-1. Environ Sci Technol 2023; 57:2636–2646 [View Article] [PubMed]
    [Google Scholar]
  15. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci 1992; 89:5685–5689 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article] [PubMed]
    [Google Scholar]
  21. Chen M-S, Pang B-Q, Liu S-W, Li F-N, Yan X-R et al. Phycicoccus flavus sp. nov., a novel endophytic actinobacterium isolated from branch of Kandelia candel. Int J Syst Evol Microbiol 2021; 71:004794 [View Article] [PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  23. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  24. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  25. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  28. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  29. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  30. Lovley DR, Phillips EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 1986; 51:683–689 [View Article] [PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  32. Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 2019; 223:33–43 [View Article] [PubMed]
    [Google Scholar]
  33. Shi L, Dong H, Reguera G, Beyenal H, Lu A et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 2016; 14:651–662 [View Article] [PubMed]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI inc: MIDI Technical Note 101; 1990
    [Google Scholar]
  35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Met 1984; 2:233–241 [View Article]
    [Google Scholar]
  36. Liu G-H, Zhang Q, Narsing Rao MP, Yang S, Tang R et al. Stress response mechanisms and description of three novel species Shewanella avicenniae sp. nov., Shewanella sedimentimangrovi sp. nov. and Shewanella yunxiaonensis sp. nov., isolated from mangrove ecosystem. Antonie van Leeuwenhoek 2021; 114:2123–2131 [View Article] [PubMed]
    [Google Scholar]
  37. Liu Y, Shang X-X, Yi Z-W, Gu L, Zeng R-Y. Shewanella mangrovi sp. nov., an acetaldehyde-degrading bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65:2630–2634 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006044
Loading
/content/journal/ijsem/10.1099/ijsem.0.006044
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error