1887

Abstract

Three Gram-stain-negative, facultatively anaerobic, rod-shaped, catalase-positive, oxidase-negative bacterial strains were designated as hw1, hw8 and hw3. Strains hw1, hw8 and hw3 grew at 15–28 °C (optimum, 25 °C), 15–35 °C (optimum, 30 °C) and 4–28 °C (optimum, 20 °C), respectively, and at pH 7.0–12.0 (optimum, pH 9.0), pH 6.0–11.0 (optimum, pH 9.0) and 5.0–12.0 (optimum, pH 7.0), respectively. Additionally, strains hw1 and hw8 only grew when the NaCl concentration was 0 %, while strain hw3 grew at between 0 and 0.5 % (w/v; optimum, 0 %). The average nucleotide identity (ANI) values between strains hw1, hw8 and the type strains ranged from 73.8 to 84.2 %, while the digital DNA–DNA hybridization (dDDH) values ranged from 19.7 to 27.5 %. The ANI values between strain hw3 and the type strains ranged from 78.7 to 80.7 %, while dDDH values ranged from 22.3 to 23.0 %. The draft genomes of strains hw1, hw8 and hw3 consisted of 5.5, 4.4 and 5.9 Mbp, with DNA G+C contents of 61.7, 61.8 and 66.0 mol%, respectively. The results of the dDDH, ANI, phylogenetic, biochemical and physiological analyses indicated that the novel strains were distinct from other members of their genera. Thus, we proposed the names sp. nov. (type strain hw1= KACC 22887= TBRC 16613), sp. nov. (type strain hw8= KACC 22885= TBRC 16614) and sp. nov. (type strain hw3= KACC 22886= TBRC 16615).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006043
2023-09-26
2024-05-08
Loading full text...

Full text loading...

References

  1. Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S et al. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the beta-subclass of the Proteobacteria. Int J Syst Bacteriol 1999; 49 Pt 2:449–457 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Sisinthy S, Gundlapally SR. Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria, Roseateles and Pelomonas. Arch Microbiol 2020; 202:1839–1848 [View Article] [PubMed]
    [Google Scholar]
  4. Pheng S, Lee JJ, Eom MK, Lee KH, Kim SG. Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int J Syst Evol Microbiol 2017; 67:2231–2235 [View Article] [PubMed]
    [Google Scholar]
  5. Liu Y, Du J, Pei T, Du H, Feng G-D et al. Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol 2022; 45:126352 [View Article] [PubMed]
    [Google Scholar]
  6. Rapala J, Berg KA, Lyra C, Niemi RM, Manz W et al. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 2005; 55:1563–1568 [View Article] [PubMed]
    [Google Scholar]
  7. Gomila M, Bowien B, Falsen E, Moore ERB, Lalucat J. Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles. Int J Syst Evol Microbiol 2008; 58:6–11 [View Article] [PubMed]
    [Google Scholar]
  8. Gomila M, Bowien B, Falsen E, Moore ERB, Lalucat J. Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int J Syst Evol Microbiol 2007; 57:2629–2635 [View Article] [PubMed]
    [Google Scholar]
  9. Fan M-C, Nan L-J, Zhu Y-M, Chen W-M, Wei G-H et al. Mitsuaria noduli sp. nov., isolated from the root nodules of Robinia pseudoacacia in a lead-zinc mine. Int J Syst Evol Microbiol 2018; 68:87–92 [View Article] [PubMed]
    [Google Scholar]
  10. Gomila M, Pinhassi J, Falsen E, Moore ERB, Lalucat J. Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 2010; 60:809–814 [View Article] [PubMed]
    [Google Scholar]
  11. Amakata D, Matsuo Y, Shimono K, Park JK, Yun CS et al. Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the “Betaproteobacteria.”. Int J Syst Evol Microbiol 2005; 55:1927–1932 [View Article] [PubMed]
    [Google Scholar]
  12. De Ley J, Segers P, Gillis M. Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 1978; 28:154–168 [View Article]
    [Google Scholar]
  13. Lu H, Deng T, Cai Z, Liu F, Yang X et al. Janthinobacterium violaceinigrum sp. nov., Janthinobacterium aquaticum sp. nov. and Janthinobacterium rivuli sp. nov., isolated from a subtropical stream in China. Int J Syst Evol Microbiol 2020; 70:2719–2725 [View Article] [PubMed]
    [Google Scholar]
  14. Gong X, Skrivergaard S, Korsgaard BS, Schreiber L, Marshall IPG et al. High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond. Stand Genomic Sci 2017; 12:8 [View Article] [PubMed]
    [Google Scholar]
  15. Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 2013; 103:763–769 [View Article]
    [Google Scholar]
  16. Lincoln SP, Fermor TR, Tindall BJ. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int J Syst Bacteriol 1999; 49 Pt 4:1577–1589 [View Article] [PubMed]
    [Google Scholar]
  17. Jung WJ, Kim SW, Giri SS, Kim HJ, Kim SG et al. Janthinobacterium tructae sp. nov., isolated from kidney of rainbow trout (Oncorhynchus mykiss). Pathogens 2021; 10:229 [View Article]
    [Google Scholar]
  18. Inan Bektas K, Nalcaoglu A, Kati H, Ceylan E, Nalcacioglu R et al. Janthinobacterium kumbetense sp. nov., a violacein-producing bacterium isolated from spring water in Turkey, and investigation of antimicrobial activity of violacein. FEMS Microbiol Lett 2023; 370:fnac119 [View Article] [PubMed]
    [Google Scholar]
  19. So Y, Chhetri G, Kim I, Kang M, Kim J et al. Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  20. Chhetri G, Kim J, Kim I, Kang M, Seo T. Chryseobacterium caseinilyticum sp. nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. Int J Syst Evol Microbiol 2021; 71:004854 [View Article]
    [Google Scholar]
  21. Chen Y-L, Lee C-C, Lin Y-L, Yin K-M, Ho C-L et al. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics 2015; 16 Suppl 18:1–11 [View Article] [PubMed]
    [Google Scholar]
  22. Kim I, Seo T. Pseudarthrobacter humi sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  26. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article] [PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  32. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  34. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  35. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  36. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14
    [Google Scholar]
  38. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  39. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  40. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  41. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 2019; 112:1349–1356 [View Article]
    [Google Scholar]
  42. Yang D, Cha S, Choi J, Seo T. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:1140–1145 [View Article] [PubMed]
    [Google Scholar]
  43. Kang M, Chhetri G, Kim J, Kim I, Seo T. Sphingomonas sabuli sp. nov., a carotenoid-producing bacterium isolated from beach sand. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  44. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  45. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  46. Lewis K. Persister cells. Annu Rev Microbiol 2010; 64:357–372 [View Article] [PubMed]
    [Google Scholar]
  47. Mohiuddin SG, Massahi A, Orman MA. lon deletion impairs persister cell resuscitation in Escherichia coli. mBio 2022; 13:e0218721 [View Article] [PubMed]
    [Google Scholar]
  48. Brandvold KR, Miller CJ, Volk RF, Killinger BJ, Whidbey C et al. Activity-based protein profiling of bile salt hydrolysis in the human gut microbiome with beta-lactam or acrylamide-based probes. Chembiochem 2021; 22:1448–1455 [View Article] [PubMed]
    [Google Scholar]
  49. Haine V, Dozot M, Dornand J, Letesson J-J, De Bolle X. NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol 2006; 188:1615–1619 [View Article] [PubMed]
    [Google Scholar]
  50. Goto Y, Li B, Claesen J, Shi Y, Bibb MJ et al. Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 2010; 8:e1000339 [View Article] [PubMed]
    [Google Scholar]
  51. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  52. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  53. Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 2000; 64:694–708 [View Article] [PubMed]
    [Google Scholar]
  54. Gomila M, Bowien B, Falsen E, Moore ERB, Lalucat J. Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int J Syst Evol Microbiol 2007; 57:2629–2635 [View Article] [PubMed]
    [Google Scholar]
  55. Rapala J, Berg KA, Lyra C, Niemi RM, Manz W et al. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 2005; 55:1563–1568 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006043
Loading
/content/journal/ijsem/10.1099/ijsem.0.006043
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error