1887

Abstract

An exopolysaccharide-producing bacterial strain GW4-15, belonging to the genus , was isolated from intertidal sediment from King George Island, Antarctic. The strain was Gram-stain-negative, aerobic, rod-shaped, non-motile and yellow-pigmented. The strain was able to grow in the presence of 0–2 % (w/v) NaCl (optimum, 0 %), at 4–30 °C (optimum, 20–28 °C) and at pH 5.0–10.0 (optimum, pH 8.0). A phylogenetic tree based on 16S rRNA gene sequences showed that strain GW4-15 formed a lineage within the genus with the closest phylogenetic neighbours NCTC 13525 (98.3 %), G5-32 (97.7 %), LMG 24720 (97.4 %) and HMD1043 (96.9 %). Digital DNA–DNA hybridization values of strain GW4-15 with NCTC 13525, LMG 24720, G5-32 and HMD1043 were 22.8, 22.0, 21.7 and 21.6 %, respectively. The average nucleotide identity values between strain GW4-15 and NCTC 13525 LMG 24720, G5-32 and HMD1043 were 79.3, 78.6, 77.5 and 77.2 %, respectively. The G+C content of the genome was 36.2 mol%. The major phospholipids were phosphatidylethanolamine and aminophospholipid. The predominant menaquinone was MK-6. The major fatty acids were anteiso-C (28.7 %), iso-C 3-OH (15.7 %), iso-C H (10.0 %), iso-C (5.4 %), summed feature 9 (comprising iso-C 9 and/or 10-methyl C; 5.2 %) and iso-C (5.1 %). The monosaccharide composition of the new type of extracellular polymeric of GW4-15 was Glc, GalN, GlcN, Rha, Man and Gal with a molar ratio of 3.14 : 3.83 : 8.38 : 5.16 : 1 : 2.82. Based on phenotypic, phylogenetic and genotypic data, a novel species, sp. nov., is proposed with the type strain GW4-15 (=CGMCC 1.19368=KCTC 92753).

Funding
This study was supported by the:
  • the National Key R&D Program of China (Award 2022YFC2807500)
    • Principle Award Recipient: JingLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006037
2023-09-19
2024-05-09
Loading full text...

Full text loading...

References

  1. Kim MK, Im W-T, Shin YK, Lim JH, Kim S-H et al. Kaistella koreensis gen. nov., sp. nov., a novel member of the Chryseobacterium-Bergeyella-Riemerella branch. Int J Syst Evol Microbiol 2004; 54:2319–2324 [View Article] [PubMed]
    [Google Scholar]
  2. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article] [PubMed]
    [Google Scholar]
  3. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article] [PubMed]
    [Google Scholar]
  4. Yassin AF, Hupfer H, Siering C, Busse H-J. Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 2010; 60:1993–1998 [View Article] [PubMed]
    [Google Scholar]
  5. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007; 57:2344–2348 [View Article] [PubMed]
    [Google Scholar]
  6. Pires C, Carvalho MF, De Marco P, Magan N, Castro PML. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010; 60:402–407 [View Article] [PubMed]
    [Google Scholar]
  7. Benmalek Y, Cayol J-L, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1876–1880 [View Article] [PubMed]
    [Google Scholar]
  8. Guo W, Li J, Shi M, Yuan K, Li N et al. Chryseobacterium montanum sp. nov. isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:4051–4056 [View Article] [PubMed]
    [Google Scholar]
  9. Joung Y, Joh K. Chryseobacterium yonginense sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011; 61:1413–1417 [View Article] [PubMed]
    [Google Scholar]
  10. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  13. Walter MF. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  17. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In methods for general and molecular Bacteriology. Mol Bacteriol 1994607–654
    [Google Scholar]
  21. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  22. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Bhattacharjee A, Bayzid MS. Machine learning based imputation techniques for estimating phylogenetic trees from incomplete distance matrices. BMC Genomics 2020; 21:497 [View Article] [PubMed]
    [Google Scholar]
  25. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–D269 [View Article] [PubMed]
    [Google Scholar]
  26. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–W185 [View Article] [PubMed]
    [Google Scholar]
  27. UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [View Article] [PubMed]
    [Google Scholar]
  28. Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008; 2008:619832 [View Article] [PubMed]
    [Google Scholar]
  29. Stropko SJ, Pipes SE, Newman JD. Genome-based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and emended description of Bacillus indicus. Int J Syst Evol Microbiol 2014; 64:3804–3809 [View Article] [PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  31. Lu M, Kleckner N. Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol 1994; 176:5847–5851 [View Article] [PubMed]
    [Google Scholar]
  32. Walker JI, Faik P, Morgan MJ. Characterization of the 5’ end of the gene for human glucose phosphate isomerase (GPI). Genomics 1990; 7:638–643 [View Article] [PubMed]
    [Google Scholar]
  33. Maceratesi P, Daude N, Dallapiccola B, Novelli G, Allen R et al. Human UDP-galactose 4’ epimerase (GALE) gene and identification of five missense mutations in patients with epimerase-deficiency galactosemia. Mol Genet Metab 1998; 63:26–30 [View Article] [PubMed]
    [Google Scholar]
  34. Jiang XM, Neal B, Santiago F, Lee SJ, Romana LK et al. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol 1991; 5:695–713 [View Article] [PubMed]
    [Google Scholar]
  35. Arbour CA, Nagar R, Bernstein HM, Ghosh S, Al-Sammarraie Y et al. Defining early steps in B. subtilis biofilm biosynthesis. BioRxiv 2023; 2023:529487
    [Google Scholar]
  36. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [PubMed]
    [Google Scholar]
  37. Mascorro JA, Kirby GS. Transmission electron microscopy biological sample preparation - use and selection of multi-viscosity Embedding materials. Scanning 1999; 21:137
    [Google Scholar]
  38. Bernardet JF, Vancanneyt M, Matte-Tailliez O, Grisez L, Tailliez P et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 2005; 28:640–660 [View Article] [PubMed]
    [Google Scholar]
  39. Peterson WJ, Bell TA, Etchells JL, Smart WW. A procedure for demonstrating the presence of carotenoid pigments in yeasts. J Bacteriol 1954; 67:708–713 [View Article] [PubMed]
    [Google Scholar]
  40. Mccarthy AJ, Cross T. A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 1984; 130:5–25 [View Article]
    [Google Scholar]
  41. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965 p 852 [View Article]
    [Google Scholar]
  42. Xu SS, Yan LE, Zhang X, Wang C, Feng G et al. Nocardiopsis fildesensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2014; 64:174–179 [View Article] [PubMed]
    [Google Scholar]
  43. Anand S, Bala K, Saxena A, Schumann P, Lal R. Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. Int J Syst Evol Microbiol 2012; 62:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  44. Lin J-N, Lai C-H, Yang C-H, Huang Y-H. Differences in clinical manifestations, antimicrobial susceptibility patterns, and mutations of fluoroquinolone target genes between Chryseobacterium gleum and Chryseobacterium indologenes. Antimicrob Agents Chemother 2019; 63:e02256-18 [View Article] [PubMed]
    [Google Scholar]
  45. Minnikin DE, Dobson G, Draper P. Characterization of Mycobacterium leprae by lipid analysis. Acta Leprol 1984; 2:113–120 [PubMed]
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  47. Sabry SA, Ghanem NB, Abu-Ella GA, Schumann P, Stackebrandt E et al. Nocardiopsis aegyptia sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2004; 54:453–456 [View Article] [PubMed]
    [Google Scholar]
  48. Sasser MC. Identification of bacteria by gas chromatography of cellular fatty acids. In USFCC Newsl vol 20 1990
    [Google Scholar]
  49. Sun M-L, Liu S-B, Qiao L-P, Chen X-L, Pang X et al. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl Microbiol Biot 2014; 98:7437–7445 [View Article] [PubMed]
    [Google Scholar]
  50. Kruger NJ. The Bradford method for protein quantitation. Methods Mol Biol 1994; 32:9–15 [View Article] [PubMed]
    [Google Scholar]
  51. Wang X, Zhao X, Lv Y, Hu M, Fan L et al. Extraction, isolation and structural characterization of a novel polysaccharide from Cyclocarya paliurus. Int J Biol Macromol 2019; 132:864–870 [View Article]
    [Google Scholar]
  52. Wang J, Salem DR, Sani RK. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8–26 [View Article]
    [Google Scholar]
  53. Holmes B, Steigerwalt A, Nicholson A. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually Indole-producing non-fermenters of CDC groups Iic, Iie, Iih and III, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. Int J Syst Evol Microbiol 20134639–4662 [View Article]
    [Google Scholar]
  54. Ren X, Jiang P, Liu Z, Liang Y, Li J. Kaistella gelatinilytica sp. nov., a flavobacterium isolated from Antarctic soil. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  55. Joung Y, Joh K. Chryseobacterium yonginense sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011; 61:1413–1417 [View Article] [PubMed]
    [Google Scholar]
  56. Yi H, Yoon HI, Chun J. Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 2005; 55:409–416 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006037
Loading
/content/journal/ijsem/10.1099/ijsem.0.006037
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error