1887

Abstract

Five halophilic archaeal strains (AGai3-5, KZCA101, CGA3, WLHS1 and WLHSJ1) were isolated from salt lakes and soda lakes in PR China. These strains had low 16S rRNA gene similarities (91.3–96.0 %) to closely related species of the family and may represent a new genus of the family. Phylogenetic and phylogenomic analyses revealed that these strains formed a distinct clade, separate from the nearby genera and . The average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity (AAI) values among these five strains and the current members of the family were 72–90, 20–42 and 62–91 %, respectively, clearly below the threshold values for species demarcation. According to the critical value of AAI (≤76 %) proposed to differentiate genera within the family , it was further indicated that these strains represented a novel genus within the family. These strains could be distinguished from the related genera according to differential phenotypic characteristics. The major lipids of these strains were phosphatidic acid (PA), phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, mannosyl glucosyl diether (DGD-PA), sulphated DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. The phenotypic, chemotaxonomic, phylogenetic and phylogenomic features indicated that strains AGai3-5 (=CGMCC 1.16078=JCM 33549), KZCA101 (=CGMCC 1.17431=JCM 35074), CGA3 (=CGMCC 1.17463=JCM 34318), WLHS1 (=CGMCC 1.13780=JCM 33562) and WLHSJ1 (=CGMCC 1.13784=JCM 33563) represent five novel species of a new genus within the family , named gen. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., respectively.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32070003)
    • Principle Award Recipient: Heng-LinCui
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006036
2023-09-20
2024-05-08
Loading full text...

Full text loading...

References

  1. Zheng M. Resources and eco-environmental protection of salt lakes in China. Environ Earth Sci 2011; 64:1537–1546 [View Article]
    [Google Scholar]
  2. Han R, Zhang X, Liu J, Long Q, Chen L et al. Microbial community structure and diversity within hypersaline Keke Salt Lake environments. Can J Microbiol 2017; 63:895–908 [View Article] [PubMed]
    [Google Scholar]
  3. Pagaling E, Wang H, Venables M, Wallace A, Grant WD et al. Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 2009; 75:5750–5760 [View Article] [PubMed]
    [Google Scholar]
  4. Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ et al. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep 2017; 7:11522 [View Article] [PubMed]
    [Google Scholar]
  5. Sorokin DY, Elcheninov AG, Toshchakov SV, Bale NJ, Damsté JSS et al. Natrarchaeobius chitinivorans gen. nov., sp. nov., and Natrarchaeobius halalkaliphilus sp. nov., alkaliphilic, chitin-utilizing haloarchaea from hypersaline alkaline lakes. Syst Appl Microbiol 2019; 42:309–318 [View Article] [PubMed]
    [Google Scholar]
  6. Sorokin DY, Khijniak TV, Elcheninov AG, Toshchakov SV, Kostrikina NA et al. Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose-utilizing haloarchaeon from hypersaline lakes. Int J Syst Evol Microbiol 2019; 69:1327–1335 [View Article] [PubMed]
    [Google Scholar]
  7. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015; 65:1050–1069 [View Article] [PubMed]
    [Google Scholar]
  8. de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of haloarchaea: the controversy of the genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909 [View Article] [PubMed]
    [Google Scholar]
  9. Bao C-X, Li S-Y, Xin Y-J, Hou J, Cui H-L. Natrinema halophilum sp. nov., Natrinema salinisoli sp. nov., Natrinema amylolyticum sp. nov. and Haloterrigena alkaliphila sp. nov., four extremely halophilic archaea isolated from salt mine, saline soil and salt lake. Int J Syst Evol Microbiol 2022; 72:005385 [View Article] [PubMed]
    [Google Scholar]
  10. Sun Y-P, Wang B-B, Wu Z-P, Zheng X-W, Hou J et al. Halorarius litoreus gen. nov., sp. nov., Halorarius halobius sp. nov., Haloglomus halophilum sp. nov., Haloglomus salinum sp. nov., and Natronomonas marina sp. nov., extremely halophilic archaea isolated from tidal flat and marine solar salt. Front Mar Sci 2023; 10:1105929 [View Article]
    [Google Scholar]
  11. Zheng X-W, Wu Z-P, Sun Y-P, Wang B-B, Hou J et al. Halorussus vallis sp. nov., Halorussus aquaticus sp. nov., Halorussus gelatinilyticus sp. nov., Halorussus limi sp. nov., Halorussus salilacus sp. nov., Halorussus salinisoli sp. nov.: six extremely halophilic archaea isolated from solar saltern, salt lake and saline soil. Extremophiles 2022; 26:32 [View Article] [PubMed]
    [Google Scholar]
  12. Cui H-L, Shi X-W, Yin X-M, Yang X-Y, Hou J et al. Halobaculum halophilum sp. nov. and Halobaculum salinum sp. nov., isolated from salt lake and saline soil. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  18. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  19. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–D357 [View Article] [PubMed]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  21. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  22. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article] [PubMed]
    [Google Scholar]
  23. Wang B-B, Sun Y-P, Wu Z-P, Zheng X-W, Hou J et al. Halorientalis salina sp. nov., Halorientalis marina sp. nov., Halorientalis litorea sp. nov.: three extremely halophilic archaea isolated from a salt lake and coarse sea salt. Extremophiles 2022; 26:26 [View Article] [PubMed]
    [Google Scholar]
  24. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  25. Xin Y-J, Bao C-X, Li S-Y, Hu X-Y, Zhu L et al. Genome-based taxonomy of genera Halomicrobium and Halosiccatus, and description of Halomicrobium salinisoli sp. nov. Syst Appl Microbiol 2022; 45:126308 [View Article] [PubMed]
    [Google Scholar]
  26. Li S-Y, Xin Y-J, Bao C-X, Hou J, Cui H-L. Haloprofundus salilacus sp. nov., Haloprofundus halobius sp. nov. and Haloprofundus salinisoli sp. nov.: three extremely halophilic archaea isolated from salt lake and saline soil. Extremophiles 2021; 26:6 [View Article] [PubMed]
    [Google Scholar]
  27. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006036
Loading
/content/journal/ijsem/10.1099/ijsem.0.006036
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error