1887

Abstract

A novel Gram-stain-negative, aerobic, motile and pleomorphic rod-shaped bacterial strain, designated COJ-58, was isolated from rice paddy soil. Strain COJ-58 grew optimally at 20–30 °C, at pH 5.0–8.0 and with 0–1.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain COJ-58 forms a distinct lineage within the family , with highest similarity to SVCO-16 (95.9 %), Y9 (95.8 %), e F-7 (95.7 %) and R5-392 (95.6 %), respectively. The average nucleotide identity, digital DNA–DNA hybridization, average amino acid identity and percentage of conserved proteins values between the genomes of strain COJ-58 and its closely related taxa are ≤77.2 %, ≤21.6 %, ≤68.3 % and ≤61.3 %, respectively. The genome size of strain COJ-58 is 4.9 Mb and the genomic DNA G + C content is 63.7 mol%. The major fatty acids are C 7, C and summed feature 2 (C 3-OH and/or iso-C I). The differential phenotypic and genotypic characteristics of strain COJ-58 indicate that it represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed, with strain COJ-58 (=KACC 22108=JCM 34744) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006033
2023-09-22
2024-05-08
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  2. Suarez C, Ratering S, Geissler-Plaum R, Schnell S. Hartmannibacter diazotrophicus gen. nov., sp. nov., a phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt-meadow plant. Int J Syst Evol Microbiol 2014; 64:3160–3167 [View Article] [PubMed]
    [Google Scholar]
  3. Xie CH, Yokota A. Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol 2005; 55:1233–1237 [View Article] [PubMed]
    [Google Scholar]
  4. Im WT, Kim SH, Kim MK, Ten LN, Lee ST. Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. Int J Syst Evol Microbiol 2006; 56:1663–1666 [View Article]
    [Google Scholar]
  5. Madhaiyan M, Jin TY, Roy JJ, Kim S-J, Weon H-Y et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:2477–2483 [View Article] [PubMed]
    [Google Scholar]
  6. Esquivel-Elizondo S, Maldonado J, Krajmalnik-Brown R. Anaerobic carbon monoxide metabolism by Pleomorphomonas carboxyditropha sp. nov., a new mesophilic hydrogenogenic carboxydotroph. FEMS Microbiol Ecol 2018; 94:1–11 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  8. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  16. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  17. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  18. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  19. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60
    [Google Scholar]
  21. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  22. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  23. Brenner S, Horne RW. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 1959; 34:103–110 [View Article] [PubMed]
    [Google Scholar]
  24. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  25. Ehmann A. The van urk-Salkowski reagent--a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr 1977; 132:267–276 [View Article] [PubMed]
    [Google Scholar]
  26. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [View Article] [PubMed]
    [Google Scholar]
  27. Jensen HL. Nitrogen fixation in leguminous plants. II. Is symbiotic nitrogen fixation influenced by Azotobacter?. Proc Linn Soc NSW 1942; 57:205–212
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Collins MD. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  30. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  33. Ding Y-P, Khan IU, Li M-M, Xian W-D, Liu L et al. Calidifontimicrobium sediminis gen. nov., sp. nov., a new member of the family Comamonadaceae. Int J Syst Evol Microbiol 2019; 69:434–440 [View Article] [PubMed]
    [Google Scholar]
  34. Xu L, Sun C, Fang C, Oren A, Xu XW. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470–4495 [View Article] [PubMed]
    [Google Scholar]
  35. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  36. Kim D, Kang K, Ahn T-Y. Chthonobacter albigriseus gen. nov., sp. nov., isolated from grass-field soil. Int J Syst Evol Microbiol 2017; 67:883–888 [View Article] [PubMed]
    [Google Scholar]
  37. Lv H, Masuda S, Fujitani Y, Sahin N, Tani A. Oharaeibacter diazotrophicus gen. nov., sp. nov., a diazotrophic and facultatively methylotrophic bacterium, isolated from rice rhizosphere. Int J Syst Evol Microbiol 2017; 67:576–582 [View Article] [PubMed]
    [Google Scholar]
  38. Xi J, Wang Y, Yang X, Tao Y, Shao Y et al. Mongoliimonas terrestris gen. nov., sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:3010–3014 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006033
Loading
/content/journal/ijsem/10.1099/ijsem.0.006033
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error