1887

Abstract

Strains chi3 and sf7 were collected from a tidal mudflat around Dongmak beach in Ganghwa, Republic of Korea. Both strains were Gram-stain-negative, aerobic or facultatively anaerobic, and rod-shaped. Results of phylogenetic tree analysis based on 16S rRNA and whole-genome sequences suggested that strains chi3 and sf7 belong to the genera and , respectively. The cells of strain chi3 were non-motile and grew at 15–45 °C (optimum, 38 °C), at pH 6.0–10.0 (optimum, pH 8.0) and in the presence of 0–9.0 % (w/v) NaCl (optimum, 2.0 %). The cells of strain sf7 were motile as they had flagella and grew at 20–48 °C (optimum, 38 °C), at pH 6.0–10.0 (optimum, pH 9.0) and in the presence of 0–5.0 % (w/v) NaCl (optimum, 1.0 %). Strains chi3 and sf7 have average nucleotide identity values (70.0–70.4% and 78.9–81.7 %) and digital DNA–DNA hybridization values (21.8–22.3% and 21.0–25.6 %) with reference strains in the genera and , respectively. Data from digital DNA–DNA hybridization, as well as phylogenetic, biochemical and physiological analyses, indicated the distinction of the two strains from the genera and , respectively, and we thus propose the names sp. nov. (type strain chi3=KACC 22866=TBRC 16612) and sp. nov. (type strain sf7=KACC 22865=TBRC 16611).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006032
2023-09-07
2024-05-08
Loading full text...

Full text loading...

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110:402–429 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Gago JF, Viver T, Urdiain M, Pastor S, Kämpfer P et al. Description of three new Alteromonas species Alteromonas antoniana sp. nov., Alteromonas lipotrueae sp. nov. and Alteromonas lipotrueiana sp. nov. isolated from marine environments, and proposal for reclassification of the genus Salinimonas as Alteromonas. Syst Appl Microbiol 2021; 44:126226 [View Article] [PubMed]
    [Google Scholar]
  4. Huang H, Mo K, Li S, Dongmei S, Zhu J et al. Alteromonas portus sp. nov., an alginate lyase-excreting marine bacterium. Int J Syst Evol Microbiol 2020; 70:1516–1521 [View Article] [PubMed]
    [Google Scholar]
  5. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015; 65:1498–1503 [View Article] [PubMed]
    [Google Scholar]
  6. Lin D, Chen Y, Zhu S, Yang J, Chen J. Alteromonas indica sp. nov., isolated from surface seawater from the Indian Ocean. Int J Syst Evol Microbiol 2018; 68:3881–3885 [View Article] [PubMed]
    [Google Scholar]
  7. Mi Jin H, Hyun Kim K, Ok Jeon C. Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 2015; 65:4208–4214 [View Article] [PubMed]
    [Google Scholar]
  8. Chiu H-H, Shieh WY, Lin SY, Tseng C-M, Chiang P-W et al. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 2007; 57:1209–1216 [View Article] [PubMed]
    [Google Scholar]
  9. Zhang D-F, Cui X-W, Li W-J, Zhang X-M, Xue H-P et al. Description of Salinimonas profundi sp. nov., a deep-sea bacterium harboring a transposon Tn6333. Antonie van Leeuwenhoek 2021; 114:69–81 [View Article] [PubMed]
    [Google Scholar]
  10. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 1982; 32:211–217 [View Article]
    [Google Scholar]
  11. Subhash Y, Tushar L, Sasikala C, Ramana CV. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013; 63:4524–4532 [View Article] [PubMed]
    [Google Scholar]
  12. Xu L, Sun C, Fang C, Oren A, Xu XW. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470–4495 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang Y, Hua J, Ying J-J, Dong H, Li H et al. Erythrobacter aurantius sp. nov., isolated from intertidal seawater in Taizhou. Int J Syst Evol Microbiol 2022; 72:005616 [View Article] [PubMed]
    [Google Scholar]
  14. Pira H, Risdian C, Müsken M, Schupp PJ, Wink J. Winogradskyella luteola sp.nov., Erythrobacter ani sp. nov., and Erythrobacter crassostrea sp.nov., isolated from the hemolymph of the pacific oyster Crassostrea gigas. Arch Microbiol 2022; 204:1–15 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon J-H, Lee M-H, Oh T-K. Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2004; 54:2231–2235 [View Article] [PubMed]
    [Google Scholar]
  16. Rainey FA, Silva J, Nobre MF, Silva MT, da Costa MS. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 2003; 53:35–41 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon JH, Kang SJ, Lee MH, Oh HW, Oh TK. Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2006; 56:1079–1083 [View Article] [PubMed]
    [Google Scholar]
  18. Furuhata K, Edagawa A, Miyamoto H, Kawakami Y, Fukuyama M. Porphyrobacter colymbi sp. nov. isolated from swimming pool water in Tokyo, Japan. J Gen Appl Microbiol 2013; 59:245–250 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon J, Lee E-Y, Nam S-J. Erythrobacter rubeus sp. nov., a carotenoid-producing alphaproteobacterium isolated from coastal seawater. Arch Microbiol 2022; 204:1–8 [View Article] [PubMed]
    [Google Scholar]
  20. Park S, Chen S, Yoon JH. Erythrobacter insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2020; 70:1470–1477 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon J. Erythrobacter alti sp. nov., a marine alphaproteobacterium isolated from seawater. Arch Microbiol 2017; 199:1133–1139 [View Article] [PubMed]
    [Google Scholar]
  22. Jiao N, Zhang Y, Zeng Y, Hong N, Liu R et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 2007; 9:3091–3099 [View Article] [PubMed]
    [Google Scholar]
  23. Zheng Q, Lin W, Liu Y, Chen C, Jiao N. A comparison of 14 Erythrobacter genomes provides insights into the genomic divergence and scattered distribution of phototrophs. Front Microbiol 2016; 7:984 [View Article] [PubMed]
    [Google Scholar]
  24. Tonon LAC, Moreira APB, Thompson F. The family Erythrobacteraceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Springer; 2014 pp 213–235 [View Article]
    [Google Scholar]
  25. Feng X-M, Mo Y-X, Han L, Nogi Y, Zhu Y-H et al. Qipengyuania sediminis gen. nov., sp. nov., a member of the family Erythrobacteraceae isolated from subterrestrial sediment. Int J Syst Evol Microbiol 2015; 65:3658–3665 [View Article] [PubMed]
    [Google Scholar]
  26. Qu JH, Ma WW, Li HF, Wang XF, Bin LB et al. Altererythrobacter amylolyticus sp. nov., isolated from lake sediment.. Int J Syst Evol Microbiol 2019; 69:1231–1236 [View Article] [PubMed]
    [Google Scholar]
  27. Kim I, Chhetri G, Kim J, So Y, Seo T. Quadrisphaera setariae sp. nov., polyphosphate-accumulating bacterium occurring as tetrad or aggregate cocci and isolated from Setaria viridis. Int J Syst Evol Microbiol 2022; 72:005465 [View Article] [PubMed]
    [Google Scholar]
  28. Chhetri G, Kim J, Kim I, Kang M, Seo T. Chryseobacterium caseinilyticum sp. nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. Int J Syst Evol Microbiol 2021; 71:004854 [View Article] [PubMed]
    [Google Scholar]
  29. Chen Y-L, Lee C-C, Lin Y-L, Yin K-M, Ho C-L et al. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics 2015; 16:1–11 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  31. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article] [PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  35. Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res 2020; 30:1291–1305 [View Article] [PubMed]
    [Google Scholar]
  36. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  37. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  39. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  40. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  42. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:281–285 [View Article] [PubMed]
    [Google Scholar]
  43. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  44. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  45. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 2019; 112:1349–1356 [View Article] [PubMed]
    [Google Scholar]
  46. Yang D, Cha S, Choi J, Seo T. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:1140–1145 [View Article] [PubMed]
    [Google Scholar]
  47. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  48. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  49. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  50. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Met 1984; 2:233–241 [View Article]
    [Google Scholar]
  51. Kessler D, Heidelberg B. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 2006; 30:825–840 [View Article] [PubMed]
    [Google Scholar]
  52. Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S et al. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 2005; 6:121 [View Article] [PubMed]
    [Google Scholar]
  53. Branco R, Chung AP, Johnston T, Gurel V, Morais P et al. The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 2008; 190:6996–7003 [View Article] [PubMed]
    [Google Scholar]
  54. Yoon JH, Kang SJ, Lee MH, Oh HW, Oh TK. Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2006; 56:1079–1083 [View Article] [PubMed]
    [Google Scholar]
  55. Yoon J-H, Lee M-H, Oh T-K. Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2004; 54:2231–2235 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006032
Loading
/content/journal/ijsem/10.1099/ijsem.0.006032
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error