1887

Abstract

Strain KC 927 was isolated during an investigation of the soil bacteria diversity on Jiaozi Mountain, central Yunnan, Southwest China. The strain was Gram-stain-negative, rod-shaped, non-motile, oxidase-negative, catalase-positive and aerobic. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain KC 927 was a member of the genus and closely related to GCR10 (98.4%), DSM 21068 (98.3 %) and ‘’ CCTCC AB 2015118 (97.9 %). With a genome size of 4 348 708 bp, strain KC 927 had 33.5 mol% DNA GC content and contained 4012 protein-coding genes and 77 RNA genes. The average nucleotide identity and digital DNA–DNA hybridization values between strain KC 927 and GCR10, DSM 21068 and ‘’ CCTCC AB 2015118 were 80.1, 79.6 and 90.7 %, and 25.5, 23.6 and 42.0 %, respectively. The main polar lipid of strain KC 927 was phosphatidylethanolamine and the respiratory quinone was MK-6. The major fatty acids (≥10 %) were iso-C, iso-C 9 and iso-C 3-OH. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain KC 927 represents a new species of the genus , for which the name sp. nov. is proposed. The type strain is KC 927 (=CGMCC 1.18760=JCM 35707).

Funding
This study was supported by the:
  • Special Project of Science-Technology Talent and Platform in Yunnan Province (Award 202105AC160042)
    • Principle Award Recipient: De-JunKong
  • Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province (Award 202002AA100007)
    • Principle Award Recipient: Shu-KunTang
  • The Yunnan Ten Thousand Talents Program for Young Top-Notch Talents (Award YNWR-QNBJ-2018-011)
    • Principle Award Recipient: Yan-RuCao
  • Applied Basic Research Fund of Qingdao (Award 202301AT070051)
    • Principle Award Recipient: Yan-RuCao
  • Joint Special Project of Universities in Yunnan Province (Award 202001BA070001-144)
    • Principle Award Recipient: XiuChen
  • Joint Special Project of Universities in Yunnan Province (Award 202001BA070001-008)
    • Principle Award Recipient: De-JunKong
  • Joint Special Project of Universities in Yunnan Province (Award 2018FH001-003)
    • Principle Award Recipient: Yan-RuCao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006031
2023-09-20
2024-05-08
Loading full text...

Full text loading...

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. Notes: new perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Bernardet JF, Hugo CJ, Bruun B, Bernardet S. Genus X. Chryseobacterium Vandamme, Bernardet, Segers, Kersters and Holmes 1994a, 829VP. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. eds Bergey’s Manual of Systematic Bacteriology New York: Springer-Verlag; 2010 pp 180–196
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Chen F-L, Wang G-C, Teng S-O, Ou T-Y, Yu F-L et al. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect 2013; 46:425–432 [View Article] [PubMed]
    [Google Scholar]
  5. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2011; 61:497–501 [View Article]
    [Google Scholar]
  6. Noh JH, Hoang VA, Kim YJ, Kang JP, Yang DC. Chryseobacterium ginsengiterrae sp. nov., with beta-glucosidase activity isolated from soil of a ginseng field. Curr Microbiol 2017; 74:1417–1424 [View Article] [PubMed]
    [Google Scholar]
  7. Keum DH, Yeon JM, Yun CS, Lee SY, Im WT. Chryseobacterium panacisoli sp. nov., isolated from ginseng-cultivation soil with ginsenoside-converting activity. Int J Syst Evol Microbiol 2021; 71:11 [View Article] [PubMed]
    [Google Scholar]
  8. Dahal RH, Chaudhary DK, Kim D-U, Pandey RP, Kim J. Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J Antibiot 2021; 74:115–123 [View Article]
    [Google Scholar]
  9. Kutsuna R, Mashima I, Miyoshi-Akiyama T, Muramatsu Y, Tomida J et al. Chryseobacterium lecithinasegens sp. nov., a siderophore-producing bacterium isolated from soil at the bottom of a pond. Int J Syst Evol Microbiol 2021; 71:12 [View Article] [PubMed]
    [Google Scholar]
  10. Kim H, Yu SM. Chryseobacterium salivictor sp. nov., a plant-growth-promoting bacterium isolated from freshwater. Antonie van Leeuwenhoek 2020; 113:989–995 [View Article] [PubMed]
    [Google Scholar]
  11. Lladó S, López-Mondéjar R, Baldrian P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 2017; 81:e00063-16 [View Article] [PubMed]
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  13. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357–363 [View Article] [PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  21. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  29. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  30. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  31. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  32. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  33. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  35. Hlaváček O, Váchová L. ATP-dependent proteinases in bacteria. Folia Microbiol 2002; 47:203–212 [View Article]
    [Google Scholar]
  36. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  37. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  38. Smibert RM, Kreig NR. Phenotypic characterization. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  39. Yadav VS, Das BK, Mohapatra S, Ahmed MN, Gautam H et al. Clinical correlation and antimicrobial susceptibility pattern of Chryseobacterium spp.: A three year prospective study. Intractable Rare Dis Res 2021; 10:37–41 [View Article] [PubMed]
    [Google Scholar]
  40. Chhetri G, Kim J, Kim I, Kang M, Seo T. Chryseobacterium caseinilyticum sp. nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. Int J Syst Evol Microbiol 2021; 71:004854 [View Article] [PubMed]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  42. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  43. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  44. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liquid Chromat 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  45. Satre M, Kennedy EP. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. J Biol Chem 1978; 253:479–483 [PubMed]
    [Google Scholar]
  46. Meganathan R, Bentley R. Menaquinone (vitamin K2) biosynthesis: conversion of o-succinylbenzoic acid to 1,4-dihydroxy-2-naphthoic acid by Mycobacterium phlei enzymes. J Bacteriol 1979; 140:92–98 [View Article] [PubMed]
    [Google Scholar]
  47. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009; 59:3001–3005 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006031
Loading
/content/journal/ijsem/10.1099/ijsem.0.006031
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error