1887

Abstract

During a survey of species diversity of and in sugarcane () rhizosphere in the Khuzestan province of Iran [ 1 ], 195 strains were examined, from which 187 belonged to (11 species) and eight to (one species). In the present study, three strains of belonging to section series , identified as by Ansari . [ 1 ], were subjected to a phylogenetic study. The multilocus phylogeny of partial β-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as sp. nov. This species is phylogenetically distinct in series , but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of sp. nov. is IRAN 18169F and the ex-type culture is LA30 (=IRAN 4042C=CBS 149737).

Funding
This study was supported by the:
  • Iranian Research Institute of Plant Protection (Award 14-16-16-9251-92001)
    • Principle Award Recipient: BitaAsgari
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006028
2023-09-07
2024-05-09
Loading full text...

Full text loading...

References

  1. Ansari L, Asgari B, Zare R, Zamanizadeh HR. Biodiversity of Penicillium and Talaromyces species from sugarcane rhizosphere in Khuzestan province (Iran). Rostaniha 2022; 23:1–24
    [Google Scholar]
  2. Pitt JI. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces London: Academic Press Inc; 1980
    [Google Scholar]
  3. Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 2011; 70:1–51 [View Article] [PubMed]
    [Google Scholar]
  4. Visagie CM, Seifert KA, Houbraken J, Samson RA, Jacobs K. A phylogenetic revision of Penicillium sect. Exilicaulis, including nine new species from fynbos in South Africa. IMA Fungus 2016; 7:75–117 [View Article] [PubMed]
    [Google Scholar]
  5. Houbraken J, Kocsubé S, Visagie CM, Yilmaz N, Wang X-C et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5–169 [View Article]
    [Google Scholar]
  6. Crous PW, Cowan DA, Maggs-Kölling G, Yilmaz N, Larsson E et al. Fungal planet description sheets: 1112-1181. Persoonia 2020; 45:251–409 [View Article] [PubMed]
    [Google Scholar]
  7. da Silva IJS, Sousa TF, de Queiroz CA, dos Santos Castro G, Caniato FF et al. Penicillium amapaense sp. nov., section Exilicaulis, and new records of Penicillium labradorum in Brazil isolated from Amazon river sediments with potential applications in agriculture and biotechnology. Mycol Progress 2023; 22:23 [View Article]
    [Google Scholar]
  8. Labuda R, Bacher M, Rosenau T, Gasparotto E, Gratzl H et al. Polyphasic approach utilized for the identification of two new toxigenic members of Penicillium section Exilicaulis, P. krskae and P. silybi spp. nov. J Fungi 2021; 7:557 [View Article]
    [Google Scholar]
  9. Tan YP, Shivas RG. Nomenclatural novelties. In Index of Australian Fungi No. 3 Zenodo; 2022 pp 1–21
    [Google Scholar]
  10. Scott DB. Studies on the genus Eupenicillium Ludwig. IV. New species from soil. Mycopathologia et Mycologia Applicata 1968; 36:1–27 [View Article]
    [Google Scholar]
  11. Stolk AC. Studies on the genus Eupenicillium Ludwig. III. Four new species of Eupenicillium. Antonie van Leeuwenhoek 1968; 34:37–53 [View Article] [PubMed]
    [Google Scholar]
  12. Udagawa S-I, Horie Y. New or noteworthy ascosporic Penicillia from Philippines. J Jpn Bot 1972; 47:338–346
    [Google Scholar]
  13. Nicoletti R, de Stefano M. Penicillium restrictum as an antagonist of plant pathogenic fungi. In Dynamic Biochemistry, Process Biotechnology and Molecular Biology 6 (Special Issue 2) vol 6 Global Science Books; 2012 pp 61–69
    [Google Scholar]
  14. Visagie CM, Renaud JB, Burgess KMN, Malloch DW, Clark D et al. Fifteen new species of Penicillium. Persoonia 2016; 36:247–280 [View Article]
    [Google Scholar]
  15. Calado M da L, Silva J, Alves C, Susano P, Santos D et al. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One 2021; 16:e0250954 [View Article] [PubMed]
    [Google Scholar]
  16. Nicoletti R, Trincone A. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar Drugs 2016; 14:37 [View Article] [PubMed]
    [Google Scholar]
  17. Zhuravleva OI, Antonov AS, Trang VTD, Pivkin MV, Khudyakova YV et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar Drugs 2021; 19:32 [View Article] [PubMed]
    [Google Scholar]
  18. Krain A, Siupka P. Fungal guttation, a source of bioactive compounds, and its ecological role-a review. Biomolecules 2021; 11:1270 [View Article] [PubMed]
    [Google Scholar]
  19. Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS et al. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 2014; 77:1351–1358 [View Article] [PubMed]
    [Google Scholar]
  20. Houbraken J, Seifert KA, Samson RA. Penicillium hermansii, a new species causing smoky mould in white button mushroom production. Mycol Progress 2019; 18:229–236 [View Article]
    [Google Scholar]
  21. Ahmadi K, Ebadzadeh HR, Hatami F, Mohammadnia Afrouzi S, Esfandiari Pour E et al. Annual agricultural statistics of Iran (2019–2020). In Crops vol 1 Tehran, Iran: Ministry of Agriculture, Planning and Economic Deputy, Information Technology Center; 2021
    [Google Scholar]
  22. Al-Nur EA, Abdulmoneim MA. Contribution to the knowledge of soil fungi in sudan Rhizosphere mycoflora of sugarcane at Kenana sugar estate. Int J Bot 2007; 3:97–102 [View Article]
    [Google Scholar]
  23. Asgari B, Zare R, Taherkhani K, Bakhshi M, Javadi A et al. Biodiversity of non-mycorrhizal fungi of sugarcane rhizosphere in selected fields of Khuzestan province. In 4th Iranian Mycological Congress, 26–28 Aug Iran: Sari Agricultural Sciences and Natural Resources University; 2019 p 27
    [Google Scholar]
  24. Juma EOA, Musyimi DM, Opande G. Enumeration and identification of rhizospheric microorganisms of sugarcane variety Co 421 in Kibos, Kisumu County, Kenya. J Asian Sci Res 2018; 8:113–127
    [Google Scholar]
  25. Romão-Dumaresq AS, Dourado MN, Fávaro LC de L, Mendes R, Ferreira A et al. Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 2016; 11:e0158974 [View Article] [PubMed]
    [Google Scholar]
  26. Ramos SMS, Cruz R, Barbosa R do N, Machado AR, Costa A da et al. Penicillium and Talaromyces communities of sugarcane soils (Saccharum officinarum L.): ecological and phylogenetic aspects. J Agricul Sci 2018; 10:335–350 [View Article]
    [Google Scholar]
  27. Ramos SMS, Cruz R, Barbosa R do N, Houbraken J, Machado AR et al. Two new Penicillium section Sclerotiorum species from sugarcane soil in Brazil. Mycol Progress 2021; 20:823–835 [View Article]
    [Google Scholar]
  28. Tavakol Noorabadi M, Babaeizad V, Zare R, Asgari B, Haidukowski M et al. Isolation, molecular identification, and mycotoxin production of Aspergillus species isolated from the rhizosphere of sugarcane in the South of Iran. Toxins 2020; 12:122 [View Article] [PubMed]
    [Google Scholar]
  29. Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW et al. Identification and nomenclature of the genus Penicillium. Stud Mycol 2014; 78:343–371 [View Article] [PubMed]
    [Google Scholar]
  30. Seifert KA, Giuseppin S. Cycloheximide tolerance as a taxonomic character in Penicillium. In Samson RA, Pitt JI. eds Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification Amsterdam, The Netherlands: Harword Publishers; 2000 pp 259–263
    [Google Scholar]
  31. Ridgway R. Color Standards and Color Nomenclature Washington, DC: 1912 [View Article]
    [Google Scholar]
  32. Mugnai L, Bridge PD, Evans HC. A chemotaxonomic evaluation of the genus Beauveria. Mycol Res 1989; 92:199–209 [View Article]
    [Google Scholar]
  33. Cenis JL. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 1992; 20:23–80 [View Article] [PubMed]
    [Google Scholar]
  34. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1985; 1:17–20 [View Article]
    [Google Scholar]
  35. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. eds PCR Protocols: A Guide to Methods and Applications New York: Academic Press Inc; 1990 pp 315–322
    [Google Scholar]
  36. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995; 61:1323–1330 [View Article] [PubMed]
    [Google Scholar]
  37. Hong S-B, Cho H-S, Shin H-D, Frisvad JC, Samson RA. Novel Neosartorya species isolated from soil in Korea. Int J Syst Evol Microbiol 2006; 56:477–486 [View Article] [PubMed]
    [Google Scholar]
  38. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 1999; 16:1799–1808 [View Article] [PubMed]
    [Google Scholar]
  39. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article] [PubMed]
    [Google Scholar]
  40. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  41. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  42. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  43. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  44. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  45. Minh BQ, Hahn MW, Lanfear R, Rosenberg M. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol 2020; 37:2727–2733 [View Article] [PubMed]
    [Google Scholar]
  46. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  47. Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 1996; 43:304–311 [View Article] [PubMed]
    [Google Scholar]
  48. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article] [PubMed]
    [Google Scholar]
  49. Rambaut A. FigTree version 1.4.0; 2012 http://tree.bio.ed.ac.uk/software/figtree/
  50. Dettman JR, Jacobson DJ, Taylor JW. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 2003; 57:2703–2720 [View Article] [PubMed]
    [Google Scholar]
  51. Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW. Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 2003; 57:2721–2741 [View Article] [PubMed]
    [Google Scholar]
  52. Bian C, Kusuya Y, Sklenář F, D’hooge E, Yaguchi T et al. Reducing the number of accepted species in Aspergillus series Nigri. Stud Mycol 2022; 102:95–132
    [Google Scholar]
  53. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 2000; 31:21–32 [View Article] [PubMed]
    [Google Scholar]
  54. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT et al. The effect of geographical scale of sampling on DNA barcoding. Syst Biol 2012; 61:851–869 [View Article] [PubMed]
    [Google Scholar]
  55. Dettman JR, Jacobson DJ, Taylor JW. Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 2006; 98:436–446 [View Article] [PubMed]
    [Google Scholar]
  56. Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A et al. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 2018; 41:142–174 [View Article] [PubMed]
    [Google Scholar]
  57. Lohse K. Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Syst Biol 2009; 58:439–442 [View Article] [PubMed]
    [Google Scholar]
  58. Papadopoulou A, Monaghan MT, Barraclough TG, Vogler AP. Sampling error does not invalidate the yule-coalescent model for species delimitation. A response to lohse (2009). Syst Biol 2009; 58:442–444 [View Article]
    [Google Scholar]
  59. Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013; 29:2869–2876 [View Article] [PubMed]
    [Google Scholar]
  60. Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol 2013; 22:4369–4383 [View Article] [PubMed]
    [Google Scholar]
  61. Houbraken J, Frisvad JC, Samson RA. Taxonomy of Penicillium section Citrina. Stud Mycol 2011; 70:53–138 [View Article] [PubMed]
    [Google Scholar]
  62. Houbraken J, Visagie CM, Meijer M, Frisvad JC, Busby PE et al. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol 2014; 78:373–451 [View Article] [PubMed]
    [Google Scholar]
  63. Langlois DK, Sutton DA, Swenson CL, Bailey CJ, Wiederhold NP et al. Clinical, morphological, and molecular characterization of Penicillium canis sp. nov., isolated from a dog with osteomyelitis. J Clin Microbiol 2014; 52:2447–2453 [View Article] [PubMed]
    [Google Scholar]
  64. Peterson SW, Orchard SS, Menon S. Penicillium menonorum, a new species related to P. pimiteouiense. IMA Fungus 2011; 2:121–125 [View Article] [PubMed]
    [Google Scholar]
  65. Rivera KG, Seifert KA. A taxonomic and phylogenetic revision of the Penicillium sclerotiorum complex. Stud Mycol 2011; 70:139–158 [View Article] [PubMed]
    [Google Scholar]
  66. Serra R, Peterson S, Venâncio A. Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Res Microbiol 2008; 159:178–186 [View Article] [PubMed]
    [Google Scholar]
  67. Visagie CM, Houbraken J, Rodriques C, Silva Pereira C, Dijksterhuis J et al. Five new Penicillium species in section Sclerotiora: a tribute to the Dutch royal family. Persoonia 2013; 31:42–62 [View Article] [PubMed]
    [Google Scholar]
  68. Davis JI, Nixon KC. Populations, genetic variation, and the delimitation of phylogenetic species. Syst Biol 1992; 41:421–435 [View Article]
    [Google Scholar]
  69. Puillandre N, Modica MV, Zhang Y, Sirovich L, Boisselier M-C et al. Large-scale species delimitation method for hyperdiverse groups. Mol Ecol 2012; 21:2671–2691 [View Article] [PubMed]
    [Google Scholar]
  70. Ahrens D, Fujisawa T, Krammer H-J, Eberle J, Fabrizi S et al. Rarity and incomplete sampling in DNA-based species delimitation. Syst Biol 2016; 65:478–494 [View Article] [PubMed]
    [Google Scholar]
  71. Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 2005; 3:e422 [View Article] [PubMed]
    [Google Scholar]
  72. Pante E, Puillandre N, Viricel A, Arnaud-Haond S, Aurelle D et al. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol Ecol 2015; 24:525–544 [View Article] [PubMed]
    [Google Scholar]
  73. Sugui JA, Peterson SW, Figat A, Hansen B, Samson RA et al. Genetic relatedness versus biological compatibility between Aspergillus fumigatus and related species. J Clin Microbiol 2014; 52:3707–3721 [View Article] [PubMed]
    [Google Scholar]
  74. Kobmoo N, Mongkolsamrit S, Arnamnart N, Luangsa-Ard JJ, Giraud T. Population genomics revealed cryptic species within host-specific zombie-ant fungi (Ophiocordyceps unilateralis). Mol Phylogenet Evol 2019; 140:106580 [View Article] [PubMed]
    [Google Scholar]
  75. Matute DR, Sepúlveda VE. Fungal species boundaries in the genomics era. Fungal Genet Biol 2019; 131:103249 [View Article] [PubMed]
    [Google Scholar]
  76. Mavengere H, Mattox K, Teixeira MM, Sepúlveda VE, Gomez OM et al. Paracoccidioides genomes reflect high levels of species divergence and little interspecific gene flow. mBio 2020; 11:e01999-20 [View Article] [PubMed]
    [Google Scholar]
  77. Savary R, Masclaux FG, Wyss T, Droh G, Cruz Corella J et al. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME J 2018; 12:17–30 [View Article] [PubMed]
    [Google Scholar]
  78. Blodgett JAV, Oh D-C, Cao S, Currie CR, Kolter R et al. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci 2010; 107:11692–11697 [View Article] [PubMed]
    [Google Scholar]
  79. Harrington TC. Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 1981; 73:1123–1129 [View Article]
    [Google Scholar]
  80. Human ZR, Slippers B, De Beer ZW, Wingfield MJ, Venter SN. Antifungal actinomycetes associated with the pine bark beetle, Orthotomicus erosus, in South Africa. S Afr J Sci 2017; 113:1–7 [View Article]
    [Google Scholar]
  81. Wingfield BD, Wingfield MJ, Duong TA. Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr Genet 2022; 68:505–514 [View Article] [PubMed]
    [Google Scholar]
  82. Dehoux P, Davies J, Cannon M. Natural cycloheximide resistance in yeast. The role of ribosomal protein L41. Eur J Biochem 1993; 213:841–848 [View Article] [PubMed]
    [Google Scholar]
  83. Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A et al. Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cycloheximide. Gene 1992; 116:105–108 [View Article] [PubMed]
    [Google Scholar]
  84. Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD et al. Novel associations between ophiostomatoid fungi, insects and tree hosts: current status-future prospects. Biol Invasions 2017; 19:3215–3228 [View Article]
    [Google Scholar]
  85. Ramírez C. Manual and Atlas of the Penicillia Amsterdam, The Netherlands: Elsevier Biomedical Press; 1982
    [Google Scholar]
  86. Kong HZ, Qi ZT. Three new species of Penicillium. Mycosystema 1988; 1:107–114
    [Google Scholar]
  87. Torres-Garcia D, Gené J, García D. New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys 2022; 86:103–145 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006028
Loading
/content/journal/ijsem/10.1099/ijsem.0.006028
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error