1887

Abstract

The species currently comprises four subspecies: subsp. , subsp. , subsp. and subsp. . Recently, several studies on suggested the presence of a separate clade containing four strains isolated from infants and one from rhesus macaque. These strains shared a phylogenetic similarity to subsp. DSM 20210 and subsp. JCM1995 [average nucleotide identity (ANI) of 98.1 %) while showed an ANI of 96.5 % with both subsp. and subsp. . The current work describes five novel additional strains isolated from Bangladeshi weaning infants and demonstrates their common phylogenetic origin with those of the previously proposed separated clade. Based on polyphasic taxonomic approach comprising loci multilocus sequence analysis and whole genome multilocus sequence typing, all ten examined strains have been confirmed as a distinct lineage within the species with subsp. and subsp. as closest subspecies. Interestingly, these strains are present in weaning infants and primates as opposed to their closest relatives which have been typically isolated from pig and calves. These strains, similarly to subsp. , show a common capacity to metabolize the human milk oligosaccharide 3-fucosyllactose. Moreover, they harbour a riboflavin synthesis operon, which differentiate them from their closest subspecies, subsp. and subsp. . Based on the consistent results from genotypical, ecological and phenotypical analyses, a novel subspecies with the name subsp. , with type strain NCC 5000 (=LMG 32752=CCOS 2034), is proposed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006013
2023-10-18
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/10/ijsem006013.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006013&mimeType=html&fmt=ahah

References

  1. Modesto M, Ngom-Bru C, Scarafile D, Bruttin A, Pruvost S et al.Bifidobacterium longum subsp. iuvenis subsp. nov., a novel subspecies isolated from the faeces of weaning infants Figshare 2023 [View Article]
    [Google Scholar]
  2. Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B et al. Bifidobacteria and their health-promoting effects. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  3. Mattarelli P, Biavati B. The bifidobacteria and related organisms: biology, taxonomy, applications. In Mattarelli P, Biavati B, BW WH. eds The Bifidobacteria and Related Organisms: Biology, Taxonomy, Applications Elsevier GmbH; 2018 pp 9–60
    [Google Scholar]
  4. Tarracchini C, Milani C, Lugli GA, Mancabelli L, Fontana F et al. Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microb Genom 2021; 7: [View Article]
    [Google Scholar]
  5. Mattarelli P, Bonaparte C, Pot B, Biavati B. Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. Int J Syst Evol Microbiol 2008; 58:767–772 [View Article] [PubMed]
    [Google Scholar]
  6. Yanokura E, Oki K, Makino H, Modesto M, Pot B et al. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 2015; 38:305–314 [View Article] [PubMed]
    [Google Scholar]
  7. Duboux S, Ngom-Bru C, De Bruyn F, Bogicevic B. Phylogenetic, functional and safety features of 1950s B. infantis strains. Microorganisms 2022; 10:203 [View Article] [PubMed]
    [Google Scholar]
  8. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  9. Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A et al. Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. Infect Genet Evol 2019; 75:103983 [View Article] [PubMed]
    [Google Scholar]
  10. Nicholson WL, Zhalnina K, de Oliveira RR, Triplett EW. Proposal to rename Carnobacterium inhibens as Carnobacterium inhibens subsp. inhibens subsp. nov. and description of Carnobacterium inhibens subsp. gilichinskyi subsp. nov., a psychrotolerant bacterium isolated from Siberian permafrost. Int J Syst Evol Microbiol 2015; 65:556–561 [View Article] [PubMed]
    [Google Scholar]
  11. Pearce ME, Langridge GC, Lauer AC, Grant K, Maiden MCJ et al. An evaluation of the species and subspecies of the genus Salmonella with whole genome sequence data: proposal of type strains and epithets for novel S. enterica subspecies VII, VIII, IX, X and XI. Genomics 2021; 113:3152–3162 [View Article]
    [Google Scholar]
  12. Tran QT, Han XY. Subspecies identification and significance of 257 clinical strains of Mycobacterium avium. J Clin Microbiol 2014; 52:1201–1206 [View Article] [PubMed]
    [Google Scholar]
  13. Mattarelli P, Holzapfel W, Franz CMAP, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014; 64:1434–1451 [View Article] [PubMed]
    [Google Scholar]
  14. O’Callaghan A, Bottacini F, O’Connell Motherway M, van Sinderen D. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 2015; 16:832 [View Article]
    [Google Scholar]
  15. Arboleya S, Bottacini F, O’Connell-Motherway M, Ryan CA, Ross RP et al. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics 2018; 19:33 [View Article] [PubMed]
    [Google Scholar]
  16. Li M, Zhou X, Stanton C, Ross RP, Zhao J et al. Comparative genomics analyses reveal the differences between B. longum subsp. infantis and B. longum subsp. longum in carbohydrate utilisation, CRISPR-Cas systems and bacteriocin operons. Microorganisms 2021; 9:1713 [View Article]
    [Google Scholar]
  17. da Silva JGV, Vieira AT, Sousa TJ, Viana MVC, Parise D et al. Comparative genomics and in silico gene evaluation involved in the probiotic potential of Bifidobacterium longum 51A. Gene 2021; 795:145781 [View Article] [PubMed]
    [Google Scholar]
  18. Díaz R, Torres-Miranda A, Orellana G, Garrido D. Comparative genomic analysis of novel Bifidobacterium longum subsp. longum strains reveals functional divergence in the human gut microbiota. Microorganisms 2021; 9:1906 [View Article] [PubMed]
    [Google Scholar]
  19. Garrido D, Dallas DC, Mills DA. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 2013; 159:649–664 [View Article]
    [Google Scholar]
  20. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci 2011; 108:4653–4658 [View Article]
    [Google Scholar]
  21. Vidal K, Sultana S, Patron AP, Binia A, Rahman M et al. Microbiota and health study: a prospective cohort of respiratory and diarrheal infections and associated risk factors in Bangladeshi infants under two years. medRxiv 20191–31 [View Article]
    [Google Scholar]
  22. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015; 77:229–235 [View Article] [PubMed]
    [Google Scholar]
  23. Vatanen T, Ang QY, Siegwald L, Sarker SA, Le Roy CI et al. A distinct clade of Bifidobacterium longum in the gut of Bangladeshi children thrives during weaning. Cell 2022; 185:4280–4297 [View Article] [PubMed]
    [Google Scholar]
  24. Satti M, Modesto M, Endo A, Kawashima T, Mattarelli P et al. Host-diet effect on the metabolism of Bifidobacterium. Genes 2021; 12:609 [View Article] [PubMed]
    [Google Scholar]
  25. Alessandri G, van Sinderen D, Ventura M. The genus Bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472–1487 [View Article] [PubMed]
    [Google Scholar]
  26. Albert K, Rani A, Sela DA. Comparative pangenomics of the mammalian gut commensal Bifidobacterium longum. Microorganisms 2019; 8:7 [View Article] [PubMed]
    [Google Scholar]
  27. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Zhao Y, Wu J, Yang J, Sun S, Xiao J et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 2012; 28:416–418 [View Article] [PubMed]
    [Google Scholar]
  30. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  31. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  32. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  33. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  34. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article] [PubMed]
    [Google Scholar]
  35. Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S et al. The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol Biol Evol 2012; 29:3345–3358 [View Article] [PubMed]
    [Google Scholar]
  36. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [View Article] [PubMed]
    [Google Scholar]
  37. Bottacini F, Ventura M, van Sinderen D, O’Connell Motherway M. Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact 2014; 13: [View Article]
    [Google Scholar]
  38. Bryant D, Moulton V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004; 21:255–265 [View Article] [PubMed]
    [Google Scholar]
  39. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006; 23:254–267 [View Article] [PubMed]
    [Google Scholar]
  40. Steel M. Recovering a tree from the leaf colourations it generates under a Markov model. Appl Math Lett 1994; 7:19–23 [View Article]
    [Google Scholar]
  41. Uelze L, Grützke J, Borowiak M, Hammerl JA, Juraschek K et al. Typing methods based on whole genome sequencing data. One Health Outlook 2020; 2:3 [View Article] [PubMed]
    [Google Scholar]
  42. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom 2018; 4:e000166 [View Article] [PubMed]
    [Google Scholar]
  43. Galpern P, Manseau M, Hettinga P, Smith K, Wilson P. Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 2012; 12:771–778 [View Article] [PubMed]
    [Google Scholar]
  44. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  45. Solopova A, Bottacini F, Venturi Degli Esposti E, Amaretti A, Raimondi S et al. Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal Bifidobacterium longum subsp. infantis ATCC 15697. Front Microbiol 2020; 11:573335 [View Article] [PubMed]
    [Google Scholar]
  46. LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl Environ Microbiol 2010; 76:7373–7381 [View Article] [PubMed]
    [Google Scholar]
  47. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep 2016; 6:35045 [View Article] [PubMed]
    [Google Scholar]
  48. Sela DA, Garrido D, Lerno L, Wu S, Tan K et al. Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 2012; 78:795–803 [View Article] [PubMed]
    [Google Scholar]
  49. James K, Bottacini F, Contreras JIS, Vigoureux M, Egan M et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep 2019; 9:15427 [View Article] [PubMed]
    [Google Scholar]
  50. Duboux S, Golliard M, Muller JA, Bergonzelli G, Bolten CJ et al. Carbohydrate-controlled serine protease inhibitor (serpin) production in Bifidobacterium longum subsp. longum. Sci Rep 2021; 11:7236 [View Article] [PubMed]
    [Google Scholar]
  51. Plows JF, Berger PK, Jones RB, Alderete TL, Yonemitsu C et al. Longitudinal changes in human milk oligosaccharides (HMOs) over the course of 24 months of lactation. J Nutr 2021; 151:876–882 [View Article] [PubMed]
    [Google Scholar]
  52. Fushinobu S, Abou Hachem M. Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem Soc Trans 2021; 49:563–578 [View Article] [PubMed]
    [Google Scholar]
  53. Modesto M, Michelini S, Stefanini I, Sandri C, Spiezio C et al. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 2015; 65:1726–1734 [View Article] [PubMed]
    [Google Scholar]
  54. Modesto M, Michelini S, Sansosti MC, De Filippo C, Cavalieri D et al. Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2018; 68:141–148 [View Article] [PubMed]
    [Google Scholar]
  55. Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 2012; 7:e44229 [View Article] [PubMed]
    [Google Scholar]
  56. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article] [PubMed]
    [Google Scholar]
  57. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  58. Bastin B, Bird P, Benzinger MJ, Crowley E, Agin J et al. Confirmation and identification of Salmonella spp., Cronobacter spp., and other Gram-negative organisms by the Bruker MALDI biotyper method: collaborative study method extension to include Campylobacter species, revised first action 2017.09. J AOAC Int 2019; 102:1595–1616 [View Article] [PubMed]
    [Google Scholar]
  59. Sánchez-Juanes F, Teixeira-Martín V, González-Buitrago JM, Velázquez E, Flores-Félix JD. Identification of species and subspecies of lactic acid bacteria present in Spanish cheeses type “Torta” by MALDI-TOF MS and pheS gene analyses. Microorganisms 2020; 8:301 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006013
Loading
/content/journal/ijsem/10.1099/ijsem.0.006013
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error