1887

Abstract

Bacterial strains were collected from the soil of a paddy field around Dongguk University in Goyang, Republic of Korea. Two Gram-stain-negative, rod-shaped, aerobic or facultatively anaerobic bacterial strains were designated S5 and Sa. The results of analysis of phylogenetic trees based on 16S rRNA and whole-genome sequences indicated that these two strains represented a member of the genus and a member of the genus , respectively. S5 exhibited 99.22, 98.10 and 97.68 % similarity to HYN0085, YX9 and DSM 19594, respectively. S5 grew at 15–40 °C (optimum, 25 °C), at pH 6.5–12.0 (optimum, pH 9.5) and in the presence of 0–0.5 % (w/v) NaCl (optimum, 0 %). Sa exhibited 99.18 %, 98.36 %, 97.82 % and 97.68 % similarity to ATSB10, DHo, 5HGs31-2 and Gsoil 3046, respectively, and grew at 20–40 °C (optimum, 30 °C), at pH 5.5–11.0 (optimum, pH 8) and in the presence of 0–4.5 % (w/v) NaCl (optimum, 2.5 %). The average nucleotide identity difference values of S5, Sa and the species reference strains were 92.16–93.62 % and 92.71–93.43%, which confirms that the S5 and Sa represent two novel species of the genera and , respectively. The draft genome of S5 consisted of 7 048 502 bp, with a DNA G+C content of 44.9 % and that of Sa of 4 398 720 bp with a DNA G+C content of 67.9 %. The phylogenetic, phenotypic and physiological characteristics permitted the distinction of the two strains from their families, and we thus propose the names sp. nov. (type strain S5 = KACC 22689 = TBRC 16343) and sp. nov. (type strain Sa=KACC 22690 = TBRC 16344).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005938
2023-06-26
2024-05-04
Loading full text...

Full text loading...

References

  1. Larkin JM, Williams PM. Runella slithyformis gen. nov., sp. nov., a curved, nonflexible, pink bacterium. Int J Syst Bacteriol 1978; 28:32–36 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Ryu SH, Nguyen TTH, Park W, Kim CJ, Jeon CO. Runella limosa sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2006; 56:2757–2760 [View Article]
    [Google Scholar]
  4. Yang X, Zhou Z, Liao S, Wang G. Runella aurantiaca sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2020; 70:2174–2177 [View Article]
    [Google Scholar]
  5. Kim H, Kang H, Joung Y, Joh K. Runella palustris sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2017; 67:676–680 [View Article]
    [Google Scholar]
  6. Chhetri G, Kim J, Kim I, Kim MK, Seo T. Runella soli sp. nov., isolated from garden soil. Antonie van Leeuwenhoek 2019; 112:1245–1252 [View Article]
    [Google Scholar]
  7. Baek M, Shin S-K, Yi H. Gemmobacter aquarius sp. nov., Runella rosea sp. nov. and Flavobacterium fluviale sp. nov., isolated from the Namhangang river system. Int J Syst Evol Microbiol 2020; 70:5640–5647 [View Article] [PubMed]
    [Google Scholar]
  8. Yang X, Zhou Z, Liao S, Wang G. Runella aurantiaca sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2020; 70:2174–2177 [View Article] [PubMed]
    [Google Scholar]
  9. Xie CH, Yokota A. Dyella japonica gen. nov., sp. nov., a γ-proteobacterium isolated from soil. Int J Syst Evol Microbiol 2005; 55:753–756 [View Article] [PubMed]
    [Google Scholar]
  10. Weon H-Y, Anandham R, Kim B-Y, Hong S-B, Jeon Y-A et al. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:1685–1690 [View Article] [PubMed]
    [Google Scholar]
  11. Anandham R, Kwon S-W, Indira Gandhi P, Kim S-J, Weon H-Y et al. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Int J Syst Evol Microbiol 2011; 61:392–398 [View Article]
    [Google Scholar]
  12. Ou F-H, Gao Z-H, Chen M-H, Bi J-Y, Qiu L-H. Dyella dinghuensis sp. nov. and Dyella choica sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:1496–1503 [View Article] [PubMed]
    [Google Scholar]
  13. Xia F, Chen M-H, Lv Y-Y, Zhang H-Y, Qiu L-H. Dyella caseinilytica sp. nov., Dyella flava sp. nov. and Dyella mobilis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:3237–3245 [View Article] [PubMed]
    [Google Scholar]
  14. Chen M, Xia F, Lv Y, Zhou X, Qiu L. Dyella acidisoli sp. nov., D. flagellata sp. nov. and D. nitratireducens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:736–743 [View Article]
    [Google Scholar]
  15. Zhou XY, Gao ZH, Chen MH, Jian MQ, Qiu LH. Isolated from monsoon evergreen broad-leaved forest soil of Dinghu mountain, China. Int J Syst Evol Microbiol 2019; 69:1016–1023 [View Article]
    [Google Scholar]
  16. Huang T, Fu J-C, Dong S-H, Zhang Q-M, Wu T-T et al. Dyella telluris sp. nov. and Dyella acidiphila sp. nov., isolated from forest soil of Dinghushan Biosphere Reserve, China. Int J Syst Evol Microbiol 2021; 71:004985 [View Article] [PubMed]
    [Google Scholar]
  17. So Y, Chhetri G, Kim I, Kang M, Kim J et al. Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2022; 72:005272 [View Article]
    [Google Scholar]
  18. de Raad M, Li YV, Kuehl JV, Andeer PF, Kosina SM et al. A defined medium for cultivation and exometabolite profiling of soil bacteria. Front Microbiol 2022; 13:855331 [View Article] [PubMed]
    [Google Scholar]
  19. Chhetri G, Kim J, Kim I, Kang M, Seo T. Chryseobacterium caseinilyticum sp. nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. Int J Syst Evol Microbiol 2021; 71:004854 [View Article]
    [Google Scholar]
  20. Chen Y-L, Lee C-C, Lin Y-L, Yin K-M, Ho C-L et al. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics 2015; 16 Suppl 18:1–11 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  28. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  30. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  33. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  34. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  35. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 2019; 112:1349–1356 [View Article]
    [Google Scholar]
  36. Yang D, Cha S, Choi J, Seo T. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:1140–1145 [View Article] [PubMed]
    [Google Scholar]
  37. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  38. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  39. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  40. Kim I, Chhetri G, Kim J, Kang M, Seo T. Lewinella aurantiaca sp. nov., a carotenoid pigment-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:6180–6187 [View Article]
    [Google Scholar]
  41. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  42. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  43. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods in Microbiol 1988; 19:161–207
    [Google Scholar]
  44. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Chhetri G, Kim J, Kim H, Kim I, Seo T. Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field. Antonie van Leeuwenhoek 2019; 112:1705–1713 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005938
Loading
/content/journal/ijsem/10.1099/ijsem.0.005938
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error