1887

Abstract

A novel Gram-stain-negative, motile, obligately anaerobic bacterium strain mPRGC8 was isolated from the ruminal fluid of a domestic goat ( L.) in Nakhon Pathom province, Thailand. The strain grew at 20–45 °C (optimum, 37 °C), pH 6.0–9.0 (optimum, pH 7.5) and 3 % (w/v) NaCl. It produced acetate, propionate, valerate, caproate and heptanoate from glucose. The 16S rRNA gene sequence analysis indicated that strain mPRGC8 belonged to the genus and was closely related to subsp. DSM 2150 (98.0 %) and subsp. JCM 6582 (97.9 %). The DNA G+C content was 53.0 mol %. Strain mPRGC8 showed average nucleotide identity, digital DNA–DNA hybridization and average animo acid identity values with JCM 34373, subsp. JCM 6582 and subsp. DSM 2150 ranging from 84.9 to 86.0 %, 21.3 to 21.8 % and 73.8 to 76.1 %, respectively. The predominant cellular fatty acids were C 9 and C 9. Phosphatidylethanolamine, three unidentified aminophospholipids, two unidentified ninhydrin positive glycolipids, an unidentified phospholipid and an unidentified lipid were detected as polar lipids. The genomic and phenotypic characteristics of strain mPRGC8 strongly support its classification as representative of new species of the genus for which the name sp. nov. is proposed. The type strain is mPRGC8 (=JCM 33725=KCTC 25178).

Funding
This study was supported by the:
  • Research and Researchers for Industries (RRI) Ph.D. program (Award PHD 61I0032)
    • Principle Award Recipient: ChackritNuengjamnong
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005936
2023-06-20
2024-05-04
Loading full text...

Full text loading...

References

  1. Von Prowazek S. Zur parasitologie von westafrika. zentralblatt fur bakteriologie parasitenkunde, infektionskrankheiten und hygiene. Abteilung I 1913; 70:32–36
    [Google Scholar]
  2. Sneath PHA, McGowan V, Skerman VBD. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  3. Johnson JL, Holdeman LV, Moore WEC. Replacement of the type strain of Selenomonas sputigena under rule 18: request for an opinion. Int J Syst Evol Microbiol 1985; 35:371–374 [View Article]
    [Google Scholar]
  4. Bergey DH, Whitman WB, De VP, Garrity GM, Jones D. Bergey’s Manual of Systematic Bacteriology (Vol. 3) Springer; 2009
    [Google Scholar]
  5. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  6. Moore LVH, Johnson JL, Moore WEC. Selenomonas noxia sp. nov., Selenomonas flueggei sp. nov., Selenomonas infelix sp. nov., Selenomonas dianae sp. nov., and Selenomonas artemidis sp. nov., from the human gingival crevice. Int J Syst Evol Microbiol 1987; 37:271–280 [View Article]
    [Google Scholar]
  7. Antezack A, Boxberger M, Ben Khedher M, La Scola B, Monnet-Corti V. Isolation and description of Selenomonas timonae sp. nov., a novel Selenomonas species detected in a gingivitis patient. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  8. Dighe AS, Shouche YS, Ranade DR. Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. Int J Syst Bacteriol 1998; 48 Pt 3:783–791 [View Article] [PubMed]
    [Google Scholar]
  9. Schleifer KH, Leuteritz M, Weiss N, Ludwig W, Kirchhof G et al. Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int J Syst Bacteriol 1990; 40:19–27 [View Article] [PubMed]
    [Google Scholar]
  10. Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun 2020; 11:6389 [View Article] [PubMed]
    [Google Scholar]
  11. Bryant MP. The characteristics of strains of Selenomonas isolated from bovine rumen contents. J Bacteriol 1956; 72:162–167 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang K, Dong X. Selenomonas bovis sp. nov., isolated from yak rumen contents. Int J Syst Evol Microbiol 2009; 59:2080–2083 [View Article] [PubMed]
    [Google Scholar]
  13. Hespell RB, Paster BJ, Dewhirst FE. The genus Selenomonas. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria NY, USA: Springer; 2006 pp 982–990 [View Article]
    [Google Scholar]
  14. Das KC, Qin W. Isolation and characterization of superior rumen bacteria of cattle (Bos taurus) and potential application in animal feedstuff. Open J Anim Sci 2012; 02:224–228 [View Article]
    [Google Scholar]
  15. Holdeman LV, Moore WEC, Cato EP, Chen J-S. Anaerobe Laboratory Manual. 4th ed Blackburg, Va: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  16. Jeon BS, Choi O, Um Y, Sang B-I. Production of medium-chain carboxylic acids by Megasphaera sp. MH with supplemental electron acceptors. Biotechnol Biofuels 2016; 9:129 [View Article] [PubMed]
    [Google Scholar]
  17. Hungate RE. Chapter IV a roll tube method for cultivation of strict anaerobes. In Methods in Microbiology Academic press; 1969 pp 117–132
    [Google Scholar]
  18. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K. Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia. Int J Syst Bacteriol 1998; 48 Pt 4:1245–1255 [View Article] [PubMed]
    [Google Scholar]
  19. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59:992–997 [View Article] [PubMed]
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Wiley; 1991 pp 115–175
    [Google Scholar]
  21. Hall TA. Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  26. Koichiro T, Glen S, Sudhir K. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  32. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  34. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  38. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809 [View Article] [PubMed]
    [Google Scholar]
  39. Kingsley VV, Hoeniger JF. Growth, structure, and classification of Selenomonas. Bacteriol Rev 1973; 37:479–521 [View Article] [PubMed]
    [Google Scholar]
  40. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  41. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Cord-Ruwisch R. Concurrent lactic and volatile fatty acid analysis of microbial fermentation samples by gas chromatography with heat pre-treatment. J Chromatogr Sci 2018; 56:1–5 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005936
Loading
/content/journal/ijsem/10.1099/ijsem.0.005936
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error