1887

Abstract

Two endophytic actinobacteria, designated as strains 7R015 and 7R016, were isolated from the roots of collected in Thailand. The morphological characteristics and results of chemotaxonomic studies and 16S rRNA gene analysis indicated that both strains represented members of the genus . They contained -diaminopimelic acid in the peptidoglycan. Ribose and glucose were detected as the whole-cell sugars. MK-9(H), MK-9(H) and MK-9(H), were found as the membrane menaquinone. The predominant cellular fatty acids detected were iso-C and anteiso-C. The genomes of both strains harboured biosynthetic gene clusters for melanin, terpene, lanthipeptide, polyketides, non-ribosomal peptide synthetase, siderophore and ectoine. The 16S rRNA gene sequence of 7R015 showed the highest similarity to that of DSM 40212 (98.6 %), NRRL B2296 (98.6 %) and DSM 40107 (98.6 %). Strain 7R016 showed the highest 16S rRNA gene sequence similarity to NBRC 110904 (98.2 %), which is lower than the threshold value for 16S rRNA gene sequence similarity for differentiation at the species level (98.65 %). Comparative genome analysis revealed that the genomes of 7R015, 7R016 and the closely related type strains had an average nucleotide identity (ANI) of less than 95 % and a digital DNA–DNA hybridisation (dDDH) of less than 70 %, the thresholds for species demarcation. On the basis of the results of the polyphasic study, strains 7R015 and 7R016 represent novel species of the genus and are named herein as sp. nov. (=NBRC 115200 = TBRC 14542) for strain 7R015 and sp. nov. (=NBRC 115201 = TBRC 14543) for strain 7R016.

Funding
This study was supported by the:
  • Faculty of Pharmaceutical Sciences, Chulalongkorn University
    • Principle Award Recipient: WongsakornPhongsopitanun
  • Thailand Research Fund (Award MRG6180011)
    • Principle Award Recipient: WongsakornPhongsopitanun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005926
2023-05-31
2024-05-01
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article] [PubMed]
    [Google Scholar]
  2. Kämpfer P. Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. eds Bergey’s Manual of Systematic Bacteriology Part B, 2nd ed. vol 5 New York: Springer; 2012 pp 1455–1767
    [Google Scholar]
  3. She W, Sun Z, Yi L, Zhao S, Liang Y. Streptomyces alfalfae sp. nov. and comparisons with its closest taxa Streptomyces silaceus, Streptomyces flavofungini and Streptomyces intermedius. Int J Syst Evol Microbiol 2016; 66:44–49 [View Article] [PubMed]
    [Google Scholar]
  4. Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999; 398:701–704 [View Article]
    [Google Scholar]
  5. Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A et al. Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot 2015; 68:368–372 [View Article]
    [Google Scholar]
  6. Xu L-H, Tiang Y-Q, Zhang Y-F, Zhao L-X, Jiang C-L. Streptomyces thermogriseus, a new species of the genus Streptomyces from soil, lake and hot-spring. Int J Syst Bacteriol 1998; 48:1089–1093 [View Article]
    [Google Scholar]
  7. Silva FSP, Souza DT, Zucchi TD, Pansa CC, de Figueiredo Vasconcellos RL et al. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie van Leeuwenhoek 2016; 109:1467–1474 [View Article] [PubMed]
    [Google Scholar]
  8. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K et al. Streptomyces verrucosisporus sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2016; 66:3607–3613 [View Article] [PubMed]
    [Google Scholar]
  9. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  10. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58:1–26 [View Article]
    [Google Scholar]
  11. Xia Y, Liu J, Chen C, Mo X, Tan Q et al. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms 2022; 10:1072 [View Article]
    [Google Scholar]
  12. Verma VC, Singh SK, Prakash S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 2011; 51:550–556 [View Article] [PubMed]
    [Google Scholar]
  13. Passari AK, Mishra VK, Singh G, Singh P, Kumar B et al. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 2017; 7:11809 [View Article] [PubMed]
    [Google Scholar]
  14. Nammali A, Intaraudom C, Pittayakhajonwut P, Suriyachadkun C, Tadtong S et al. Streptomyces endocoffeicus sp. nov., an endophytic actinomycete isolated from Coffea arabica (L.). Antonie van Leeuwenhoek 2021; 114:1889–1898 [View Article] [PubMed]
    [Google Scholar]
  15. Nammali A, Intaraudom C, Pittayakhajonwut P, Suriyachadkun C, Tadtong S et al. Streptomyces coffeae sp. nov., an endophytic actinomycete isolated from the root of Coffea arabica (L.). Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  16. Duangupama T, Intaraudom C, Pittayakhajonwut P, Tadtong S, Thawai C. Streptomyces epipremni sp. nov., an endophytic actinomycete isolated from the root of Epipremnum aureum. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  17. Phongsopitanun W, Sripreechasak P, Rueangsawang K, Panyawut R, Pittayakhajonwut P et al. Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants. ScienceAsia 2020; 46:288 [View Article]
    [Google Scholar]
  18. Hayakawa M, Nonomura H. Humic acid–vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  21. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–148
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  28. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article] [PubMed]
    [Google Scholar]
  29. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  32. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  34. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  35. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  36. Kelly KL. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  37. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989; 39:168–173 [View Article]
    [Google Scholar]
  38. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  39. Williams ST, Cross T. Chapter XI actinomycetes. In Booth C. eds Methods Microbiol vol 4 London: American press; 1971 pp 295–334
    [Google Scholar]
  40. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  42. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; p 199
    [Google Scholar]
  44. Fang B-Z, Han M-X, Jiao J-Y, Xie Y-G, Zhang X-T et al. Streptomyces cavernae sp. nov., a novel actinobacterium isolated from a karst cave sediment sample. Int J Syst Evol Microbiol 2020; 70:120–125 [View Article]
    [Google Scholar]
  45. Shibazaki A, Omoto Y, Kudo T, Yaguchi T, Saito A et al. Streptomyces coacervatus sp. nov., isolated from the intestinal tract of Armadillidium vulgare. Int J Syst Evol Microbiol 2011; 61:1073–1077 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005926
Loading
/content/journal/ijsem/10.1099/ijsem.0.005926
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error