1887

Abstract

Strain LLG6346-3.1, isolated from the thallus of the brown alga collected from the Mediterranean Sea near Bastia in Corsica, France, was characterised using a polyphasic method. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, motile by gliding, rod-shaped and grew optimally at 30–33 °C, at pH 8–8.5 and with 4–5 % NaCl. LLG6346-3.1 used the seaweed polysaccharide alginic acid as a sole carbon source which was vigorously liquefied. The results of phylogenetic analyses indicated that the bacterium is affiliated to the genus (family , class ). LLG6346-3.1 exhibited 16S rRNA gene sequence similarity values of 98.6 and 98.3 % to the type strains of and , respectively, and of 97.4–98.5 % to members of other species of the genus . The DNA G+C content of LLG6346-3.1 was determined to be 38.3 mol%. Digital DNA–DNA hybridisation predictions by the average nucleotide identity (ANI) and genome to genome distance calculator (GGDC) methods between LLG6346-3.1 and other members of the genus showed values of 76–88 % and below 37 %, respectively. The results of phenotypic, phylogenetic and genomic analyses indicate that LLG6346-3.1 is distinct from species of the genus with validly published names and that it represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LLG6346-3.1 (= RCC7657 = LMG 32918).

Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award ANR-18- CE02-0001-01)
    • Principle Award Recipient: FrançoisThomas
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005924
2023-06-02
2024-05-08
Loading full text...

Full text loading...

References

  1. Barbeyron T, L’Haridon S, Corre E, Kloareg B, Potin P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 2001; 51:985–997 [View Article] [PubMed]
    [Google Scholar]
  2. Potin P, Sanseau A, Le Gall Y, Rochas C, Kloareg B. Purification and characterization of a new κ-carrageenase from a marine Cytophaga-like bacterium. Eur J Biochem 1991; 201:241–247 [View Article] [PubMed]
    [Google Scholar]
  3. Nedashkovskaya OI, Suzuki M, Vancanneyt M, Cleenwerck I, Lysenko AM et al. Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov., novel marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2004; 54:1643–1648 [View Article] [PubMed]
    [Google Scholar]
  4. Nedashkovskaya O, Otstavnykh N, Zhukova N, Guzev K, Chausova V et al. Zobellia barbeyronii sp. nov., a new member of the family Flavobacteriaceae, isolated from seaweed, and emended description of the species Z. amurskyensis, Z. laminariae, Z. russellii and Z. uliginosa. Diversity 2021; 13:520 [View Article]
    [Google Scholar]
  5. Barbeyron T, Thiébaud M, Le Duff N, Martin M, Corre E et al. Zobellia roscoffensis sp. nov. and Zobellia nedashkovskayae sp. nov., two flavobacteria from the epiphytic microbiota of the brown alga Ascophyllum nodosum, and emended description of the genus Zobellia. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  6. Miranda LN, Hutchison K, Grossman AR, Brawley SH. Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?. PLoS One 2013; 8:e58269 [View Article] [PubMed]
    [Google Scholar]
  7. Dogs M, Wemheuer B, Wolter L, Bergen N, Daniel R et al. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Syst Appl Microbiol 2017; 40:370–382 [View Article] [PubMed]
    [Google Scholar]
  8. Brunet M, Le Duff N, Fuchs BM, Amann R, Barbeyron T et al. Specific detection and quantification of the marine flavobacterial genus Zobellia on macroalgae using novel qPCR and CARD-FISH assays. Syst Appl Microbiol 2021; 44:126269 [View Article] [PubMed]
    [Google Scholar]
  9. Zobell C. Studies on marine bacteria I the cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4:42–75
    [Google Scholar]
  10. Brewster JD. A simple micro-growth assay for enumerating bacteria. J Microbiol Methods 2003; 53:77–86 [View Article] [PubMed]
    [Google Scholar]
  11. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article] [PubMed]
    [Google Scholar]
  12. Smibert R, Krieg N. General characterization. In Gerhardt P, Murray R, Costilow R, Nester E, Wood W. eds Manual of Methods for General Bacteriology Washington, DC., USA: American Society for Microbiology; 1981 pp 409–443
    [Google Scholar]
  13. Draget K, Ostgaard K, Smidsrød O. Alginate-based solid media for plant tissue culture. Appl Microbiol Biotechnol 1989; 31:79–83 [View Article]
    [Google Scholar]
  14. Thomas F, Barbeyron T, Michel G. Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans. J Microbiol Methods 2011; 84:61–66 [View Article]
    [Google Scholar]
  15. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  16. Hicks RE, Amann RI, Stahl DA. Dual staining of natural bacterioplankton with 4’,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 1992; 58:2158–2163 [View Article] [PubMed]
    [Google Scholar]
  17. Kane MD, Poulsen LK, Stahl DA. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 1993; 59:682–686 [View Article] [PubMed]
    [Google Scholar]
  18. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  26. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [View Article] [PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  30. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:2–3 [View Article]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  32. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  35. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S et al. MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013; 41:D636–47 [View Article] [PubMed]
    [Google Scholar]
  36. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–5 [View Article] [PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  38. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article]
    [Google Scholar]
  39. Thomas F, Lundqvist LCE, Jam M, Jeudy A, Barbeyron T et al. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem 2013; 288:23021–23037 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005924
Loading
/content/journal/ijsem/10.1099/ijsem.0.005924
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error