1887

Abstract

A Gram-stain-negative, aerobic, reddish-coloured, rod-shaped and non-motile strain PAMC 29467, was isolated from freshwater of the pond in Cambridge Bay, Canada. Strain PAMC 29467 was closely related to (98.1 % 16S rRNA gene similarity). Genomic relatedness analyses showed that strain PAMC 29467 is distinguishable from based on average nucleotide identity (91.3 %) and digital DNA–DNA hybridization values (39.3 %). The major fatty acids (>10 %) of strain PAMC 29467 were summed feature 3 (C 7 and/or C 6), C iso, C 5 and summed feature 4 (C iso l and/or anteiso B). The major respiratory quinone was menaquinone-7. The genomic DNA G+C content was 61.5 mol%. Strain PAMC 29467 was separated from the type species in the genus by its distinct phylogenetic position and some physiological characteristics. As a result, a novel species is proposed, with the name sp. nov. (type strain, PAMC 29467=KCTC 92787=JCM 35843).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005913
2023-06-16
2024-05-03
Loading full text...

Full text loading...

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–6 [View Article] [PubMed]
    [Google Scholar]
  3. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 2:731–734 [View Article] [PubMed]
    [Google Scholar]
  4. Buczolits S, Denner EBM, Vybiral D, Wieser M, Kämpfer P et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 2002; 52:445–456 [View Article] [PubMed]
    [Google Scholar]
  5. Han J, Ten LN, Lee DH, Kang IK, Jung HY. Hymenobacter agri sp. nov., a novel bacterium isolated from soil. Antonie van Leeuwenhoek 2018; 111:1815–1823 [View Article] [PubMed]
    [Google Scholar]
  6. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15:45–57 [View Article] [PubMed]
    [Google Scholar]
  7. Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P et al. Hymenobacter amundsenii sp. nov. resistant to ultraviolet radiation, isolated from regoliths in Antarctica. Syst Appl Microbiol 2019; 42:284–290 [View Article] [PubMed]
    [Google Scholar]
  8. Lee J-J, Park S-J, Lee Y-H, Lee S-Y, Ten LN et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int J Syst Evol Microbiol 2017; 67:1206–1211 [View Article] [PubMed]
    [Google Scholar]
  9. Kang H, Cha I, Kim H, Joh K. Hymenobacter aquatilis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2018; 68:2036–2041 [View Article] [PubMed]
    [Google Scholar]
  10. Chang X, Zheng J, Jiang F, Liu P, Kan W et al. Hymenobacter arcticus sp. nov., isolated from glacial till. Int J Syst Evol Microbiol 2014; 64:2113–2118 [View Article] [PubMed]
    [Google Scholar]
  11. Reddy GSN, Garcia-Pichel F. Description of Hymenobacter arizonensis sp. nov. from the Southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 2013; 103:321–330 [View Article] [PubMed]
    [Google Scholar]
  12. Park Y, Chang Y, Kim MK. Hymenobacter armeniacus sp. nov. and Hymenobacter montanus sp. nov., two radiation-resistant bacteria from soil. Int J Syst eEvol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  13. Roldán DM, Kyrpides N, Woyke T, Shapiro N, Whitman WB et al. Hymenobacter artigasi sp. nov., isolated from air sampling in maritime Antarctica. Int J Syst Evol Microbiol 2020; 70:4935–4941 [View Article] [PubMed]
    [Google Scholar]
  14. Lee JH, Kim MK, Jung JH, Seo HS, Zhang J et al. Hymenobacter baengnokdamensis sp nov., isolated from the soil of a crater lake in Korea. Curr Microbiol 2020; 77:4167–4173 [View Article] [PubMed]
    [Google Scholar]
  15. Chen H, Han L, Feng Q, Fan Q, Lv J. Hymenobacter bucti sp. nov., isolated from subsurface sandstone sediment. Int J Syst Evol Microbiol 2018; 68:2749–2754 [View Article] [PubMed]
    [Google Scholar]
  16. Roldán DM, Kyrpides N, Woyke T, Shapiro N, Whitman WB et al. Hymenobacter caeli sp. nov., an airborne bacterium isolated from King George Island, Antarctica. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  17. Zhu HZ, Yang L, Muhadesi JB, Wang BJ, Liu SJ. Hymenobacter cavernae sp. nov., isolated from a karst cave. Int J Syst Evol Microbiol 2017; 67:4825–4829 [View Article] [PubMed]
    [Google Scholar]
  18. Buczolits S, Denner EBM, Kämpfer P, Busse H-J. Proposal of Hymenobacter norwichensis sp. nov., classification of “Taxeobacter ocellatus”, “Taxeobacter gelupurpurascens” and “Taxeobacter chitinovorans” as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article] [PubMed]
    [Google Scholar]
  19. Kang JW, Baik KS, Im WT, Seong CN. Hymenobacter coalescens sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:3546–3551 [View Article] [PubMed]
    [Google Scholar]
  20. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse H-J et al. Red-pink pigmented Hymenobacter coccineus sp nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017; 67:1975–1983 [View Article] [PubMed]
    [Google Scholar]
  21. Liang Y, Tang K, Wang Y, Yuan B, Tan F et al. Hymenobacter crusticola sp. nov., isolated from biological soil crust. Int J Syst Evol Microbiol 2019; 69:547–551 [View Article] [PubMed]
    [Google Scholar]
  22. Xu J-L, Liu Q-M, Yu H-S, Jin F-X, Lee S-T et al. Hymenobacter daecheongensis sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2009; 59:1183–1187 [View Article] [PubMed]
    [Google Scholar]
  23. Ten LN, Lee Y-H, Lee J-J, Park S-J, Lee S-Y et al. Hymenobacter daeguensis sp. nov. isolated from river water. J Microbiol 2017; 55:253–259 [View Article] [PubMed]
    [Google Scholar]
  24. Jin L, Wu X, Ko S-R, Jin F-J, Li T et al. Description of Hymenobacter daejeonensis sp. nov., isolated from grass soil, based on multilocus sequence analysis of the 16S rRNA gene, gyrB and tuf genes. Antonie van Leeuwenhoek 2018; 111:2283–2292 [View Article] [PubMed]
    [Google Scholar]
  25. Kang JW, Choi S, Choe HN, Seong CN. Hymenobacter defluvii sp. nov., isolated from wastewater of an acidic water neutralization facility. Int J Syst Evol Microbiol 2018; 68:277–282 [View Article] [PubMed]
    [Google Scholar]
  26. Zhang L, Dai J, Tang Y, Luo X, Wang Y et al. Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2009; 59:77–82 [View Article] [PubMed]
    [Google Scholar]
  27. Nie L, Fan X, Xiang D, Liao S, Wang G. Hymenobacter edaphi sp. nov., isolated from abandoned arsenic-contaminated farmland soil. Int J Syst Evol Microbiol 2019; 69:2921–2927 [View Article] [PubMed]
    [Google Scholar]
  28. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. Syst Appl Microbiol 2010; 33:436–443 [View Article]
    [Google Scholar]
  29. Feng GD, Zhang J, Chen W, Wang SN, Zhu H. Hymenobacter fodinae sp. nov. and Hymenobacter metallicola sp. nov., isolated from abandoned lead-zinc mine. Int J Syst Evol Microbiol 2020; 70:4867–4873 [View Article] [PubMed]
    [Google Scholar]
  30. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Hymenobacter frigidus sp. nov., isolated from a glacier ice core. Int J Syst Evol Microbiol 2017; 67:4121–4125 [View Article] [PubMed]
    [Google Scholar]
  31. Cha I, Kang H, Kim H, Bae S, Joh K. Hymenobacter ginkgonis sp. nov., isolated from bark of Ginkgo biloba. Int J Syst Evol Microbiol 2020; 70:4760–4766 [View Article] [PubMed]
    [Google Scholar]
  32. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:661–666 [View Article] [PubMed]
    [Google Scholar]
  33. Liu K, Liu Y, Wang N, Gu Z, Shen L et al. Hymenobacter glacieicola sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2016; 66:3793–3798 [View Article] [PubMed]
    [Google Scholar]
  34. Chen WM, Chen WT, Young CC, Sheu SY. Hymenobacter gummosus sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017; 67:4728–4735 [View Article] [PubMed]
    [Google Scholar]
  35. Srinivasan S, Joo ES, Lee JJ, Kim MK. Hymenobacter humi sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 2015; 107:1411–1419 [View Article] [PubMed]
    [Google Scholar]
  36. Sedláček I, Pantůček R, Holochová P, Králová S, Staňková E et al. Hymenobacter humicola sp. nov., isolated from soils in Antarctica. Int J Syst Evol Microbiol 2019; 69:2755–2761 [View Article] [PubMed]
    [Google Scholar]
  37. Ten LN, Han YE, Park KI, Kang I-K, Han J-S et al. Hymenobacter jeollabukensis sp nov., isolated from soil. J Microbiol 2018; 56:500–506 [View Article] [PubMed]
    [Google Scholar]
  38. Su S, Chen M, Teng C, Jiang S, Zhang C et al. Hymenobacter kanuolensis sp. nov., a novel radiation-resistant bacterium. Int J Syst Evol Microbiol 2014; 64:2108–2112 [View Article] [PubMed]
    [Google Scholar]
  39. Kang JY, Chun J, Choi A, Moon SH, Cho J-C et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63:4568–4573 [View Article] [PubMed]
    [Google Scholar]
  40. Sedláček I, Pantůček R, Zeman M, Holochová P, Šedo O et al. Hymenobacter terrestris sp. nov. and Hymenobacter lapidiphilus sp. nov., isolated from regoliths in Antarctica. Int J Syst Evol Microbiol 2020; 70:6364–6372 [View Article] [PubMed]
    [Google Scholar]
  41. Liu L, Zhou E-M, Jiao J-Y, Manikprabhu D, Ming H et al. Hymenobacter latericoloratus sp. nov. and Hymenobacter luteus sp. nov., isolated from freshwater sediment. Antonie van Leeuwenhoek 2015; 107:165–172 [View Article] [PubMed]
    [Google Scholar]
  42. Cho E-S, Park S-L, Nam Y-D, Lim S-I, Kim D-Y et al. Hymenobacter lutimineralis sp. nov., belonging to the family Hymenobacteraceae, isolated from zeolite. Antonie van Leeuwenhoek 2020; 113:947–957 [View Article] [PubMed]
    [Google Scholar]
  43. Kang H, Kim H, Joung Y, Kim KJ, Joh K. Hymenobacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2016; 66:2212–2217 [View Article] [PubMed]
    [Google Scholar]
  44. Feng G-D, Zhang J, Zhang X-J, Wang S-N, Xiong X et al. Hymenobacter metallilatus sp. nov., isolated from abandoned lead-zinc ore. Int J Syst Evol Microbiol 2019; 69:2142–2146 [View Article] [PubMed]
    [Google Scholar]
  45. Fan X, Wang Q, Zheng S, Shi K, Wang G. Hymenobacter monticola sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:812–816 [View Article] [PubMed]
    [Google Scholar]
  46. Liu L, Zhou E-M, Jiao J-Y, Manikprabhu D, Ming H et al. Hymenobacter mucosus sp. nov., isolated from a karst cave soil sample. Int J Syst Evol Microbiol 2015; 65:4121–4127 [View Article] [PubMed]
    [Google Scholar]
  47. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article] [PubMed]
    [Google Scholar]
  48. Sheu SY, Li YS, Young CC, Chen WM. Hymenobacter pallidus sp. nov., isolated from a freshwater fish culture pond. Int J Syst Evol Microbiol 2017; 67:2915–2921 [View Article] [PubMed]
    [Google Scholar]
  49. Chen W-M, Li Y-S, Chen Z-H, Young C-C, Sheu S-Y. Uliginosibacterium paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2016; 66:5118–5123 [View Article] [PubMed]
    [Google Scholar]
  50. Lim SJ, Ten LN, Kim BO, Kang IK, Jung HY. Hymenobacter pedocola sp. nov., a novel bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:2242–2248 [View Article] [PubMed]
    [Google Scholar]
  51. Ten LN, Jeon NY, Li W, Kim MK, Cho Y-J et al. Hymenobacter persicinus sp. nov., a novel member of the family Hymenobacteraceae. Antonie Van Leeuwenhoek 2019; 112:1019–1028 [View Article] [PubMed]
    [Google Scholar]
  52. Sheu SY, Yang CC, Kwon SW, Chen WM. Hymenobacter piscis sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  53. Dahal RH, Chaudhary DK, Kim DU, Kim J. Hymenobacter polaris sp. nov., a psychrotolerant bacterium isolated from an Arctic station. Int J Syst Evol Microbiol 2020; 70:4890–4896 [View Article] [PubMed]
    [Google Scholar]
  54. Ten LN, Li W, Lee S-Y, Kang I-K, Cho Y-J et al. Hymenobacter pomorum sp. nov., isolated from apple orchard soil. Curr Microbiol 2019; 76:117–123 [View Article]
    [Google Scholar]
  55. Sun J, Xing M, Wang W, Dai F, Liu J et al. Hymenobacter profundi sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2018; 68:947–950 [View Article] [PubMed]
    [Google Scholar]
  56. Zhang D-C, Busse H-J, Liu H-C, Zhou Y-G, Schinner F et al. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2011; 61:859–863 [View Article] [PubMed]
    [Google Scholar]
  57. Zhang G, Niu F, Busse H-J, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai–Tibet Plateau permafrost region. Int J Syst Evol Microbiol 2008; 58:1215–1220 [View Article] [PubMed]
    [Google Scholar]
  58. Han L, Wu S-J, Qin C-Y, Zhu Y-H, Lu Z-Q et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 2014; 105:971–978 [View Article] [PubMed]
    [Google Scholar]
  59. Baik KS, Seong CN, Moon EY, Park Y-D, Yi H et al. Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2006; 56:2189–2192 [View Article] [PubMed]
    [Google Scholar]
  60. Sheu SY, Hsieh TY, Kwon SW, Chen WM. Hymenobacter rivuli sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018; 68:1220–1226 [View Article] [PubMed]
    [Google Scholar]
  61. Subhash Y, Sasikala C, Ramana CV. Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 2014; 64:4129–4133 [View Article] [PubMed]
    [Google Scholar]
  62. Jin L, Lee H-G, Kim S-G, Lee KC, Ahn C-Y et al. Hymenobacter ruber sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2014; 64:979–983 [View Article] [PubMed]
    [Google Scholar]
  63. Lee J-J, Joo ES, Kim EB, Jeon SH, Srinivasan S et al. Hymenobacter rubidus sp. nov., bacterium isolated from a soil. Antonie van Leeuwenhoek 2016; 109:457–466 [View Article] [PubMed]
    [Google Scholar]
  64. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L et al. Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2018; 68:663–668 [View Article] [PubMed]
    [Google Scholar]
  65. Ohn JE, Ten LN, Kim BO, Cho YJ, Jung HY. Hymenobacter rufus sp. nov., a bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:2983–2989 [View Article] [PubMed]
    [Google Scholar]
  66. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017; 67:856–861 [View Article] [PubMed]
    [Google Scholar]
  67. Lee JJ, Kang MS, Joo ES, Jung HY, Kim MK. Hymenobacter sedentarius sp. nov., isolated from a soil. J Microbiol 2016; 54:283–289 [View Article] [PubMed]
    [Google Scholar]
  68. Wang C, Liu BT, Zhang R, Liu CL, Du ZJ. Hymenobacter sediminis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2020; 70:1895–1902 [View Article] [PubMed]
    [Google Scholar]
  69. Ten LN, Lim SJ, Kim BO, Kang IK, Jung HY. Hymenobacter segetis sp. nov., isolated from soil. Arch Microbiol 2018; 200:1167–1175 [View Article] [PubMed]
    [Google Scholar]
  70. Lee J-J, Lee Y-H, Park S-J, Lee S-Y, Park S et al. Hymenobacter seoulensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 2017; 67:596–601 [View Article] [PubMed]
    [Google Scholar]
  71. Chhetri G, Kim J, Kim I, Kim H, Seo T. Hymenobacter setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis. Int J Syst Evol Microbiol 2020; 70:3724–3730 [View Article] [PubMed]
    [Google Scholar]
  72. Park Y, Noh H-J, Hwang CY, Shin SC, Hong SG et al. Hymenobacter siberiensis sp. nov., isolated from a marine sediment of the East Siberian Sea and Hymenobacter psoromatis sp. nov., isolated from an Antarctic lichen. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  73. Kim KH, Im WT, Lee ST. Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2008; 58:941–945 [View Article] [PubMed]
    [Google Scholar]
  74. Lee J-J, Srinivasan S, Lim S, Joe M, Lee SH et al. Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil. Curr Microbiol 2014; 68:305–310 [View Article] [PubMed]
    [Google Scholar]
  75. Lee JH, Jung JH, Kim MK, Choe HN, Lim S. Hymenobacter taeanensis sp. nov., radiation resistant bacterium isolated from coastal sand dune. Antonie van Leeuwenhoek 2021; 114:1585–1593 [View Article] [PubMed]
    [Google Scholar]
  76. Kang JW, Choi S, Choe HN, Seong CN. Hymenobacter defluvii sp. nov., isolated from wastewater of an acidic water neutralization facility. Int J Syst Evol Microbiol 2018; 68:277–282 [View Article] [PubMed]
    [Google Scholar]
  77. Srinivasan S, Lee J-J, Park KR, Park S-H, Jung H-Y et al. Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr Microbiol 2015; 70:643–650 [View Article] [PubMed]
    [Google Scholar]
  78. Tang K, Yuan B, Lai Q, Wang R, Bao H et al. Hymenobacter terrenus sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2015; 65:4557–4562 [View Article] [PubMed]
    [Google Scholar]
  79. Chen Y, Zhu L, Bai P, Cui S, Xin Y et al. Hymenobacter terricola sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  80. Ohn J-E, Ten LN, Park KI, Kim B-O, Han J-S et al. Hymenobacter terrigena sp. nov., isolated from soil. J Microbiol 2018; 56:231–237 [View Article] [PubMed]
    [Google Scholar]
  81. Dai J, Wang Y, Zhang L, Tang Y, Luo X et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 2009; 32:543–548 [View Article] [PubMed]
    [Google Scholar]
  82. Kang JW, Lee JH, Baik KS, Lee SS, Seong CN. Hymenobacter wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2015; 65:1871–1876 [View Article] [PubMed]
    [Google Scholar]
  83. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007; 57:1752–1756 [View Article] [PubMed]
    [Google Scholar]
  84. Joung Y, Cho SH, Kim H, Kim SB, Joh K. Hymenobacter yonginensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011; 61:1511–1514 [View Article] [PubMed]
    [Google Scholar]
  85. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991
    [Google Scholar]
  86. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  87. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article] [PubMed]
    [Google Scholar]
  88. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  89. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  90. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  91. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  92. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  93. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  94. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article] [PubMed]
    [Google Scholar]
  95. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  96. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  97. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  98. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  99. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  100. KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  101. Lee YM, Kim G, Jung Y-J, Choe C-D, Yim JH et al. Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol 2012; 35:1433–1438 [View Article]
    [Google Scholar]
  102. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  103. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  104. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acids Methyl Esters (GC-FAME) Newark, NY: Microbial ID; 2006
    [Google Scholar]
  105. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005913
Loading
/content/journal/ijsem/10.1099/ijsem.0.005913
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error