1887

Abstract

A Gram-stain-positive, aerobic, non-motile, non-spore-forming and rod-shaped actinobacterium, designated strain 10Sc9-8, was isolated from Taklamakan desert soil sampled in the Xinjiang Uygur Autonomous Region, China. Strain 10Sc9-8 grew at 8‒37 °C (optimum, 28‒30 °C), pH 6.0‒10.0 (optimum, pH 7.0–8.0) and in the presence of 0‒15 % (w/v) NaCl (optimum, 0–3 %). Phylogenetic analysis based on 16S rRNA gene sequence suggested that strain 10Sc9-8 was affiliated with members of the genus and showed the highest 16S rRNA gene sequence similarity to Z443 (97.4 %). Phylogenomic analysis based on the whole genome sequences indicated that strain 10Sc9-8 should be assigned into the genus . The average nucleotide identity and digital DNA–DNA hybridization values calculated from the whole genome sequences indicated that strain 10Sc9-8 was clearly separated from other closely related species of the genus with values below the thresholds for species delineation. Chemotaxonomic analyses showed that the cell-wall peptidoglycan was in a variant of A4 type with an interpeptide bridge comprising -Lys–-Ala–Gly–-Asp. The predominant menaquinone was MK-8(H). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, several unidentified phospholipids, glycolipids and one unidentified lipid. The major fatty acids were anteiso-C, anteiso-C A and C. The genomic DNA G+C content was 72.7 mol%. On the basis of phenotypic, phylogenetic and phylogenomic data, strain 10Sc9-8 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 10Sc9-8 (=JCM 33946=CPCC 206219).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005906
2023-05-25
2024-05-01
Loading full text...

Full text loading...

References

  1. Altenburger P, Kämpfer P, Schumann P, Steiner R, Lubitz W et al. Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 2002; 52:2095–2100 [View Article] [PubMed]
    [Google Scholar]
  2. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  3. Hamada M, Tamura T, Ishida Y, Suzuki K. Georgenia thermotolerans sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 2009; 59:1875–1879 [View Article] [PubMed]
    [Google Scholar]
  4. Kämpfer P, Arun AB, Busse H-J, Langer S, Young C-C et al. Georgenia soli sp. nov., isolated from iron-ore-contaminated soil in India. Int J Syst Evol Microbiol 2010; 60:1027–1030 [View Article] [PubMed]
    [Google Scholar]
  5. Woo S-G, Cui Y, Kang M-S, Jin L, Kim KK et al. Georgenia daeguensis sp. nov., isolated from 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 2012; 62:1703–1709 [View Article] [PubMed]
    [Google Scholar]
  6. Tang S-K, Wang Y, Lee J-C, Lou K, Park D-J et al. Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:1317–1421 [View Article] [PubMed]
    [Google Scholar]
  7. Srinivas A, Rahul K, Sasikala C, Subhash Y, Ramaprasad EVV et al. Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012; 62:2405–2409 [View Article] [PubMed]
    [Google Scholar]
  8. You Z-Q, Li J, Qin S, Tian X-P, Wang F-Z et al. Georgenia sediminis sp. nov., a moderately thermophilic actinobacterium isolated from sediment. Int J Syst Evol Microbiol 2013; 63:4243–4247 [View Article] [PubMed]
    [Google Scholar]
  9. Wang S, Xu X, Wang L, Jiao K, Zhang G. Georgenia subflava sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2015; 65:4146–4150 [View Article] [PubMed]
    [Google Scholar]
  10. Hozzein WN, Yang Z-W, Alharbi SA, Alsakkaf WAA, Asem MD et al. Georgenia deserti sp. nov., a halotolerant actinobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2018; 68:1135–1139 [View Article] [PubMed]
    [Google Scholar]
  11. Li L-Y, Yang Z-W, Asem MD, Salam N, Xiao M et al. Georgenia alba sp. nov., a novel halotolerant actinobacterium isolated from a desert sand sample. Antonie van Leeuwenhoek 2019; 112:203–209 [View Article] [PubMed]
    [Google Scholar]
  12. Tian Z, Zhang D, Lu S, Jin D, Yang J et al. Georgenia wutianyii sp. nov. and Georgenia yuyongxinii sp. nov. isolated from plateau pika (Ochotona curzoniae) on the Qinghai–Tibet plateau of China. Int J Syst Evol Microbiol 2020; 70:2318–2324 [View Article] [PubMed]
    [Google Scholar]
  13. Wang X, Yang J, Huang Y, Wu X, Wang L et al. Georgenia faecalis sp. nov. isolated from the faeces of Tibetan antelope. J Microbiol 2020; 58:734–740 [View Article] [PubMed]
    [Google Scholar]
  14. Liu S, Wang T, Lu Q, Li F, Wu G et al. Bioprospecting of soil-derived Actinobacteria along the Alar-Hotan Desert highway in the Taklamakan desert. Front Microbiol 2021; 12:604999 [View Article] [PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester, United Kingdom: John Wiley & Sons; 1991 pp 115–147
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  23. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  24. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714
    [Google Scholar]
  25. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  26. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  28. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  29. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  30. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  31. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 2004; 32:D431–3 [View Article] [PubMed]
    [Google Scholar]
  32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  33. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  34. Kappes RM, Kempf B, Kneip S, Boch J, Gade J et al. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 1999; 32:203–216 [View Article] [PubMed]
    [Google Scholar]
  35. Lucht JM, Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 1994; 14:3–20 [View Article] [PubMed]
    [Google Scholar]
  36. Horn C, Sohn-Bösser L, Breed J, Welte W, Schmitt L et al. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J Mol Biol 2006; 357:592–606 [View Article] [PubMed]
    [Google Scholar]
  37. Horn C, Bremer E, Schmitt L. Nucleotide dependent monomer/dimer equilibrium of OpuAA, the nucleotide-binding protein of the osmotically regulated ABC transporter OpuA from Bacillus subtilis. J Mol Biol 2003; 334:403–419 [View Article] [PubMed]
    [Google Scholar]
  38. Malek AA, Chen C, Wargo MJ, Beattie GA, Hogan DA. Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism. J Bacteriol 2011; 193:3033–3041 [View Article] [PubMed]
    [Google Scholar]
  39. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ, Saier MH. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J Biol Chem 1994; 269:11869–11872 [View Article] [PubMed]
    [Google Scholar]
  40. Louis P, Galinski EA. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 1997; 143:1141–1149 [View Article] [PubMed]
    [Google Scholar]
  41. Shahidi F, Chandrasekara A. The use of antioxidants in the preservation of cereals and low-moisture foods. In Shahidi F. eds Handbook of Antioxidants for Food Preservation Woodhead Publishing; 2015 pp 413–432
    [Google Scholar]
  42. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  44. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  45. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  47. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  48. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  49. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable Gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article] [PubMed]
    [Google Scholar]
  50. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  51. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI inc: 1990
    [Google Scholar]
  52. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  53. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  54. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article] [PubMed]
    [Google Scholar]
  55. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005906
Loading
/content/journal/ijsem/10.1099/ijsem.0.005906
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error