1887

Abstract

A novel Gram-negative, aerobic, motile, rod-shaped, beige-pigmented bacterium, strain ARW1-2F2, was isolated from a seawater sample collected from Roscoff, France. Strain ARW1-2F2 was catalase-negative and oxidase-positive, and grew under mesophilic, neutrophilic and halophilic conditions. The 16S rRNA sequences revealed that strain ARW1-2F2 was closely related to LFT 1.7 and RW17-10(95.8 and 95.5 % gene sequence similarity, respectively). The genome of strain ARW1-2F2 was sequenced and had a G+C content of 28.7%. Two different measures of genome similarity, average nucleotide identity based on and digital DNA–DNA hybridization, indicated that strain ARW1-2F2 represents a new species. The predominant fatty acids were C ω7/C ω6 and C ω7/C ω6. The results of a polyphasic analysis supported the description of strain ARW1-2F2 as representing a novel species of the genus , for which the name sp. nov. is proposed with the type strain ARW1-2F2 (DSM 29169=KCTC 52423).

Funding
This study was supported by the:
  • Seventh Framework Programme (Award no 311975)
    • Principle Award Recipient: JörgOvermann
  • Bundesministerium für Bildung und Forschung (Award 16GW0113K)
    • Principle Award Recipient: JörgOvermann
  • Bundesministerium für Bildung und Forschung (Award 01LL0912M)
    • Principle Award Recipient: JörgOvermann
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005895
2023-05-18
2024-05-15
Loading full text...

Full text loading...

References

  1. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 2018; 9:772 [View Article]
    [Google Scholar]
  2. McClung CR, Patriquin DG, Davis RE. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int J Syst Evol Microbiol 1983; 33:605–612 [View Article]
    [Google Scholar]
  3. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P et al. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 1991; 41:88–103 [View Article] [PubMed]
    [Google Scholar]
  4. Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A et al. Corrigendum (2): revisiting the taxonomy of the genus Arcobacter: getting order from the chaos. Front Microbiol 2019; 10:2253 [View Article] [PubMed]
    [Google Scholar]
  5. On SLW, Miller WG, Biggs PJ, Cornelius AJ, Vandamme P. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst Appl Microbiol 2020; 43:126108 [View Article] [PubMed]
    [Google Scholar]
  6. On SLW, Miller WG, Biggs PJ, Cornelius AJ, Vandamme P. Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter and Poseidonibacter are later synonyms of Arcobacter: transfer of Poseidonibacter parvus, Poseidonibacter antarcticus, ‘Halarcobacter arenosus’, and ‘Aliarcobacter vitoriensis’ to Arcobacter as Arcobacter parvus comb. nov., Arcobacter antarcticus comb. nov., Arcobacter arenosus comb. nov. and Arcobacter vitoriensis comb. nov. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  7. Park S, Jung Y-T, Kim S, Yoon J-H. Arcobacter acticola sp. nov., isolated from seawater on the East Sea in South Korea. J Microbiol 2016; 54:655–659 [View Article] [PubMed]
    [Google Scholar]
  8. Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Bossier P et al. Arcobacter haliotis sp. nov., isolated from abalone species Haliotis gigantea. Int J Syst Evol Microbiol 2017; 67:3050–3056 [View Article] [PubMed]
    [Google Scholar]
  9. Diéguez AL, Balboa S, Magnesen T, Romalde JL. Arcobacter lekithochrous sp. nov., isolated from a molluscan hatchery. Int J Syst Evol Microbiol 2017; 67:1327–1332 [View Article] [PubMed]
    [Google Scholar]
  10. Pérez-Cataluña A, Salas-Massó N, Figueras MJ. Arcobacter canalis sp. nov., isolated from a water canal contaminated with urban sewage. Int J Syst Evol Microbiol 2018; 68:1258–1264 [View Article] [PubMed]
    [Google Scholar]
  11. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002; 68:3878–3885 [View Article] [PubMed]
    [Google Scholar]
  12. Stingl U, Tripp HJ, Giovannoni SJ. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J 2007; 1:361–371 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534–544 [View Article] [PubMed]
    [Google Scholar]
  15. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Terriglobus albidus sp. nov., a member of the family Acidobacteriaceae isolated from Namibian semiarid savannah soil. Int J Syst Evol Microbiol 2015; 65:3297–3304 [View Article] [PubMed]
    [Google Scholar]
  16. Pascual J, Foesel BU, Geppert A, Huber KJ, Boedeker C et al. Roseisolibacter agri gen. nov., sp. nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes. Int J Syst Evol Microbiol 2018; 68:1028–1036 [View Article] [PubMed]
    [Google Scholar]
  17. Pascual J, Foesel BU, Geppert A, Huber KJ, Overmann J. Flaviaesturariibacter luteus sp. nov., isolated from an agricultural floodplain soil, and emended description of the genus Flaviaesturariibacter. Int J Syst Evol Microbiol 2017; 67:1727–1734 [View Article] [PubMed]
    [Google Scholar]
  18. Vandamme P, Dewhirst FE, Paster BJ, On SL, Trujillo ME et al. Arcobacter. In Trujillo ME, Dedysh S, DeVos P, Hedlund B. eds In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 [View Article]
    [Google Scholar]
  19. Huber KJ, Wüst PK, Rohde M, Overmann J, Foesel BU. Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol 2014; 64:1866–1875 [View Article] [PubMed]
    [Google Scholar]
  20. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 1990; 101:
    [Google Scholar]
  21. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article] [PubMed]
    [Google Scholar]
  22. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics 1991 pp 115–175
    [Google Scholar]
  23. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  25. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  27. The Bacterial and Viral Bioinformatics Resource Center (BV-BRC). https://www.bv-brc.org/
  28. Wu L, Ma J. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int J Syst Evol Microbiol 2019; 69:895–898 [View Article] [PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2019 [View Article]
    [Google Scholar]
  31. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302 [View Article] [PubMed]
    [Google Scholar]
  32. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  36. Guo X-H, Wang N, Yuan X-X, Zhang X-Y, Chen X-L et al. Poseidonibacter antarcticus sp. nov., isolated from Antarctic intertidal sediment. Int J Syst Evol Microbiol 2019; 69:2717–2722 [View Article] [PubMed]
    [Google Scholar]
  37. Kim MJ, Baek M-G, Shin S-K, Yi H. Poseidonibacter parvus sp. nov., isolated from a squid. Int J Syst Evol Microbiol 2021; 71:4590 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005895
Loading
/content/journal/ijsem/10.1099/ijsem.0.005895
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error