1887

Abstract

Two related anaerobic strains, designated as SWB101512 and SWB19611, were isolated from the bronchoalveolar lavage fluid of two lung cancer patients. Cells were Gram-stain-positive, non-motile and non-spore-forming. Growth could be observed at 26–45 °C (optimum, 37 °C), pH 5.0–8.5 (optimum, pH 7.0) and with 0.5–2.0 % (v/w) NaCl (optimum, 1.0%). The 16S rRNA gene sequences of SWB101512 and SWB19611 showed the highest similarities to DSM 21843 (91.1 and 91.3 %, respectively). The phylogenetic tree based on the 16S rRNA gene sequences and the core genome sequences demonstrated that the two strains clustered together and formed a distinct lineage within the family . The DNA G+C contents of strains SWB101512 and SWB19611 were 62.0 and 61.9 mol%, respectively. The predominant cellular fatty acids of strains SWB101512 and SWB19611 were C DMA (27.8 and 28.8 %, respectively). The respiratory menaquinone in both strains was menaquinone 6 and the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, two phospholipids, three glycolipids and three unidentified lipids. Based on evidence from phenotypic, chemotaxonomic and genomic analyses, a new genus and species belonging to the family , named gen. nov., sp. nov. is proposed. The type strain is SWB101512 (=GDMCC 1.2991=JCM 35330).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005864
2023-05-15
2024-05-13
Loading full text...

Full text loading...

References

  1. Gupta RS, Chen WJ, Adeolu M, Chai Y. Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol 2013; 63:3379–3397 [View Article] [PubMed]
    [Google Scholar]
  2. Nakazawa F, Poco SE, Ikeda T, Sato M, Kalfas S et al. Cryptobacterium curtum gen. nov., sp. nov., a new genus of Gram-positive anaerobic rod isolated from human oral cavities. Int J Syst Bacteriol 1999; 49 Pt 3:1193–1200 [View Article] [PubMed]
    [Google Scholar]
  3. Beltrán D, Romo-Vaquero M, Espín JC, Tomás-Barberán FA, Selma MV. Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family Eggerthellaceae, isolated from human gut. Int J Syst Evol Microbiol 2018; 68:1707–1712 [View Article] [PubMed]
    [Google Scholar]
  4. García-Villalba R, Beltrán D, Frutos MD, Selma MV, Espín JC et al. Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens. Food Funct 2020; 11:7012–7022 [View Article] [PubMed]
    [Google Scholar]
  5. Danylec N, Göbl A, Stoll DA, Hetzer B, Kulling SE et al. Rubneribacter badeniensis gen. nov., sp. nov. and Enteroscipio rubneri gen. nov., sp. nov., new members of the Eggerthellaceae isolated from human faeces. Int J Syst Evol Microbiol 2018; 68:1533–1540 [View Article] [PubMed]
    [Google Scholar]
  6. Würdemann D, Tindall BJ, Pukall R, Lünsdorf H, Strömpl C et al. Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn’s disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2009; 59:1405–1415 [View Article] [PubMed]
    [Google Scholar]
  7. Traore SI, Yasir M, Azhar EI, Bibi F, Bittar F et al. Raoultibacter massiliensis” gen. nov., sp. nov., a new bacterium isolated from the human gut of a Saudi Bedouin. New Microbes New Infect 2016; 14:1–3 [View Article] [PubMed]
    [Google Scholar]
  8. Han K-I, Kim J-S, Lee KC, Eom MK, Suh MK et al. Senegalimassilia faecalis sp. nov., an anaerobic actinobacterium isolated from human faeces, and emended description of the genus Senegalimassilia. Int J Syst Evol Microbiol 2020; 70:1684–1690 [View Article] [PubMed]
    [Google Scholar]
  9. Cho G-S, Ritzmann F, Eckstein M, Huch M, Briviba K et al. Quantification of Slackia and Eggerthella spp. in human feces and adhesion of representatives strains to Caco-2 cells. Front Microbiol 2016; 7:658 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang G, Lv X, Cheng Y, Lai X-H, Yang J et al. New members of the family Eggerthellaceae isolated from Marmota himalayana: Xiamenia xianingshaonis gen. nov., sp. nov., from intestinal contents, and Berryella wangjianweii sp. nov., from trachea. Int J Syst Evol Microbiol 2022; 72:5509 [View Article] [PubMed]
    [Google Scholar]
  11. Anderson RC, Rasmussen MA, Jensen NS, Allison MJ. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int J Syst Evol Microbiol 2000; 50:633–638 [View Article] [PubMed]
    [Google Scholar]
  12. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  13. Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol 2018; 9:1168 [View Article] [PubMed]
    [Google Scholar]
  14. Fonkou MD, Dufour JC, Dubourg G, Raoult D. Repertoire of bacterial species cultured from the human oral cavity and respiratory tract. Future Microbiol 2018; 13:1611–1624 [View Article] [PubMed]
    [Google Scholar]
  15. Cascone T, Weissferdt A, Godoy MCB, William WN, Leung CH et al. Nodal immune flare mimics nodal disease progression following neoadjuvant immune checkpoint inhibitors in non-small cell lung cancer. Nat Commun 2021; 12:5045 [View Article] [PubMed]
    [Google Scholar]
  16. Zheng X, Sun X, Liu Q, Huang Y, Yuan Y. The composition alteration of respiratory microbiota in lung cancer. Cancer Invest 2020; 38:158–168 [View Article] [PubMed]
    [Google Scholar]
  17. Zhuo M, An T, Zhang C, Wang Z. Characterization of microbiota in cancerous lung and the contralateral non-cancerous lung within lung cancer patients. Front Oncol 2020; 10:1584 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S. A stepwise algorithm for finding minimum evolution trees. Mol Biol Evol 1996; 13:584–593 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  24. Lim HJ, Lee EH, Yoon Y, Chua B, Son A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J Appl Microbiol 2016; 120:379–387 [View Article] [PubMed]
    [Google Scholar]
  25. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  26. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  27. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  30. Urban M, Cuzick A, Seager J, Wood V, Rutherford K et al. PHI-base: the pathogen-host interactions database. Nucleic Acids Res 2020; 48:D613–D620 [View Article] [PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  33. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  34. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. Bergey’s Manual of Systematic Bacteriology: The Actinobacteria, 2nd edn. New York, NY: 2012 p 1977 [View Article]
    [Google Scholar]
  35. Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing, M100, 32nd ed Wayne, PA: 2022
    [Google Scholar]
  36. Moss CW, Guerrant GO. Separation of bacterial ubiquinones by reverse-phase high-pressure liquid chromatography. J Clin Microbiol 1983; 18:15–17 [View Article] [PubMed]
    [Google Scholar]
  37. Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1964; 5:126–127 [View Article]
    [Google Scholar]
  38. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 2008; 58:1221–1227 [View Article] [PubMed]
    [Google Scholar]
  39. Wade WG, Downes J, Dymock D, Hiom SJ, Weightman AJ et al. The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49 Pt 2:595–600 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005864
Loading
/content/journal/ijsem/10.1099/ijsem.0.005864
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error