1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005856
2023-04-28
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/4/ijsem005856.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005856&mimeType=html&fmt=ahah

References

  1. Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes, Subcommittee on the taxonomy of Rhizobia and Agrobacteria, minutes of the annual meeting by videoconference, 5 July 2021, followed by online discussion until 31 December 2021. Int J Syst Evol Microbiol 2022; 72:005453 [View Article] [PubMed]
    [Google Scholar]
  2. Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 2022; 72:005243 [View Article] [PubMed]
    [Google Scholar]
  3. Kuzmanović N, Biondi E, Overmann J, Puławska J, Verbarg S et al. Genomic analysis provides novel insights into diversification and taxonomy of Allorhizobium vitis (i.e. Agrobacterium vitis). BMC Genom 2022; 23:462 [View Article] [PubMed]
    [Google Scholar]
  4. Ashrafi S, Kuzmanović N, Patz S, Lohwasser U, Bunk B et al. Two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia) show different plant colonization strategies. Microbiol Spectr 2022; 10:e0109922 [View Article] [PubMed]
    [Google Scholar]
  5. Mafakheri H, Taghavi SM, Khezerpour K, Kuzmanović N, Osdaghi E. Genomic analyses of rose crown gall-associated bacteria revealed two new Agrobacterium species: Agrobacterium burrii sp nov. and Agrobacterium shirazense sp. nov. Phytopathology® 2022; 112:1208–1213 [PubMed]
    [Google Scholar]
  6. Leducq J-B, Sneddon D, Santos M, Condrain-Morel D, Bourret G et al. Comprehensive phylogenomics of Methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol Evol 2022; 14:evac123 [View Article] [PubMed]
    [Google Scholar]
  7. Green PN, Ardley JK. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 2018; 68:2727–2748 [View Article] [PubMed]
    [Google Scholar]
  8. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022; 7:1702–1708 [View Article] [PubMed]
    [Google Scholar]
  9. Sutcliffe IC, Dijkshoorn L, Whitman WB, Executive Board OBOTI. Minutes of the International Committee on Systematics of Prokaryotes online discussion on the proposed use of gene sequences as type for naming of prokaryotes, and outcome of vote. Int J Syst Evol Microbiol 2020; 70:4416–4417 [View Article] [PubMed]
    [Google Scholar]
  10. Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol 2020; 5:987–994 [View Article] [PubMed]
    [Google Scholar]
  11. Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96–104 [View Article] [PubMed]
    [Google Scholar]
  12. Puławska J, Kuzmanović N, Trzciński P. Agrobacterium vaccinii sp. nov. isolated from galls on blueberry plants (Vaccinium corymbosum). Syst Appl Microbiol 2022; 45:126319 [View Article] [PubMed]
    [Google Scholar]
  13. Pulido-Suárez L, Flores-Félix JD, Socas-Pérez N, Igual JM, Velázquez E et al. Endophytic Bosea spartocytisi sp. nov. Coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands). Syst Appl Microbiol 2022; 45:126374 [View Article] [PubMed]
    [Google Scholar]
  14. Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T et al. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2022; 167:107338 [View Article] [PubMed]
    [Google Scholar]
  15. Sun L, Zhang Z, Dong X, Tang Z, Ju B et al. Bradyrhizobium aeschynomenes sp. nov., a root and stem nodule microsymbiont of Aeschynomene indica . Syst Appl Microbiol 2022; 45:126337 [View Article] [PubMed]
    [Google Scholar]
  16. Klepa MS, Helene LCF, O Hara G, Hungria M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int J Syst Evol Microbiol 2022; 72:005446 [View Article] [PubMed]
    [Google Scholar]
  17. Bromfield ESP, Cloutier S, Wasai-Hara S, Minamisawa K. Strains of Bradyrhizobium barranii sp. nov. associated with legumes native to Canada are symbionts of soybeans and belong to different subspecies (subsp. barranii subsp. nov. and subsp. apii subsp. nov.) and symbiovars (sv. glycinearum and sv. septentrionale). Int J Syst Evol Microbiol 2022; 72:10 [View Article] [PubMed]
    [Google Scholar]
  18. Jin C-Z, Wu X-W, Zhuo Y, Yang Y, Li T et al. Genomic insights into a free-living, nitrogen-fixing but non nodulating novel species of Bradyrhizobium sediminis from freshwater sediment: Three isolates with the smallest genome within the genus Bradyrhizobium . Syst Appl Microbiol 2022; 45:126353 [View Article] [PubMed]
    [Google Scholar]
  19. Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC et al. Expanding the Burkholderia pseudomallei complex with the addition of two novel species: Burkholderia mayonis sp nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e01583–21
    [Google Scholar]
  20. Morales-Ruíz L-M, Rodríguez-Cisneros M, Kerber-Díaz J-C, Rojas-Rojas F-U, Ibarra JA et al. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex. Arch Microbiol 2022; 204:1–9 [View Article] [PubMed]
    [Google Scholar]
  21. Park S, Seo MJ, Kim W, Yoon JH. Devosia litorisediminis sp. nov., isolated from a sand dune. Arch Microbiol 2022; 204:1–6 [View Article] [PubMed]
    [Google Scholar]
  22. Chhetri G, Kim I, Kang M, Kim J, So Y et al. Devosia rhizoryzae sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members of the genus Devosia, isolated from the rhizosphere of rice plants. J Microbiol 2022; 60:1–10 [View Article] [PubMed]
    [Google Scholar]
  23. Pang Y, Lu W, Chen M, Yan Y, Lin M et al. Devosia salina sp. nov., isolated from South China Sea sediment. Int J Syst Evol Microbiol 2022; 72:005258 [View Article] [PubMed]
    [Google Scholar]
  24. Mohamad R, Willems A, Le Quéré A, Pervent M, Maynaud G et al. Mesorhizobium ventifaucium sp. nov. and Mesorhizobium escarrei sp. nov., two novel root-nodulating species isolated from Anthyllis vulneraria . Syst Appl Microbiol 2022; 45:126341 [View Article] [PubMed]
    [Google Scholar]
  25. León-Barrios M, Flores-Félix J-D, Pérez-Yépez J, Ramirez-Bahena M-H, Pulido-Suárez L et al. Definition of the novel symbiovar canariense within Mesorhizobium neociceri sp. nov., a new species of genus Mesorhizobium nodulating Cicer canariense in the “Caldera de Taburiente” National Park (La Palma, Canary Islands). Syst Appl Microbiol 2021; 44:126237 [View Article] [PubMed]
    [Google Scholar]
  26. Damdintogtokh T, Park Y, Maeng S, Oh HJ, Bang M et al. Microvirga terrestris sp. nov., and Microvirga arvi sp. nov., isolated from soil in South Korea. Arch Microbiol 2022; 204:1–6 [View Article] [PubMed]
    [Google Scholar]
  27. Maeng S, Park Y, Oh H, Bang M, Baigalmaa J et al. Microvirga jeongseonensis sp. nov., isolated from soil in South Korea. Arch Microbiol 2022; 204:1–4 [View Article] [PubMed]
    [Google Scholar]
  28. Du X, Ran Q, Wang J, Jiang H, Wang J et al. Microvirga roseola sp. nov. and Microvirga lenta sp. nov., isolated from Taklamakan Desert soil. Int J Syst Evol Microbiol 2022; 72:005409 [View Article] [PubMed]
    [Google Scholar]
  29. Zi Z-D, Wen W, Ma F, Li W, Wang Z-X et al. Microvirga puerhi sp. nov., isolated from Puerh tea garden soil. Arch Microbiol 2022; 204:390 [View Article] [PubMed]
    [Google Scholar]
  30. Zhang X, Feng G-D, Zhen X, Zhang Y, Deng X et al. Microvirga terricola sp. nov. and Microvirga solisilvae sp. nov, isolated from forest soil. Arch Microbiol 2022; 204:1–7 [View Article] [PubMed]
    [Google Scholar]
  31. Park Y, Maeng S, Damdintogtokh T, Oh H, Bang M et al. Microvirga splendida sp. nov., bacteria isolated from soil. Antonie Van Leeuwenhoek 2022; 115:741–747 [View Article] [PubMed]
    [Google Scholar]
  32. Pan H, Zhou Z-Q, He G-W, Zhou J, Jin K et al. Neorhizobium xiangyangii sp. nov., isolated from a highland barley cultivation soil in Qamdo, Tibet. Arch Microbiol 2022; 204:1–7 [View Article] [PubMed]
    [Google Scholar]
  33. Nag P, Mondal N, Sarkar J, Das S. Paraburkholderia bengalensis sp. nov. isolated from roots of Oryza sativa, IR64. Arch Microbiol 2022; 204:1–9 [View Article] [PubMed]
    [Google Scholar]
  34. Madhaiyan M, Sriram S, Kiruba N, Saravanan VS. Genome-based Reclassification of Paraburkholderia insulsa as a Later Heterotypic Synonym of Paraburkholderia fungorum and Proposal of Paraburkholderia terrae subsp. terrae subsp. nov. and Paraburkholderia terrae subsp. steynii subsp. nov. Curr Microbiol 2022; 79:1–6 [View Article] [PubMed]
    [Google Scholar]
  35. Vanwijnsberghe S, Peeters C, Cnockaert M, De Canck E, Vandamme P. Paraburkholderia gardini sp. nov. and Paraburkholderia saeva sp. nov.: Novel aromatic compound degrading bacteria isolated from garden and forest soil samples. Syst Appl Microbiol 2022; 45:126318 [View Article] [PubMed]
    [Google Scholar]
  36. Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK et al. Delineation of Paraburkholderia tuberum sensu stricto and description of Paraburkholderia podalyriae sp. nov. nodulating the South African legume Podalyria calyptrata . Syst Appl Microbiol 2022; 45:126316 [View Article] [PubMed]
    [Google Scholar]
  37. Shen H, Luo X, Xia Z, Wan C. Rhizobium alarense sp. nov. and Rhizobium halophilum sp. nov. isolated from the nodule and rhizosphere of Lotus japonicus . Arch Microbiol 2022; 204:1–9 [View Article] [PubMed]
    [Google Scholar]
  38. Yang E, Liu J, Chen D, Wang S, Xu L et al. Rhizobium cremeum sp. nov., isolated from sewage and capable of acquisition of heavy metal and aromatic compounds resistance genes. Syst Appl Microbiol 2022; 45:126322 [View Article] [PubMed]
    [Google Scholar]
  39. Rajnovic I, Ramírez-Bahena M-H, Kajic S, Igual JM, Peix Á et al. Rhizobium croatiense sp. nov. and Rhizobium redzepovicii sp nov, two new species isolated from nodules of Phaseolus vulgaris in Croatia. Syst Appl Microbiol 2022; 45:126317 [View Article] [PubMed]
    [Google Scholar]
  40. Shen L, Liu J-J, Liu P-X, An M-M, He X-W et al. A non-symbiotic novel species, Rhizobium populisoli sp. nov., isolated from rhizosphere soil of Populus popularis . Arch Microbiol 2021; 204:1–7 [View Article] [PubMed]
    [Google Scholar]
  41. Wang CB, Bian DR, Jiang N, Xue H, Piao CG et al. Rhizobium quercicola sp. nov., isolated from the leaf of Quercus variablis in China. Arch Microbiol 2022; 204:1–6 [View Article] [PubMed]
    [Google Scholar]
  42. Kang M, Seo T. Rhizobium setariae sp. nov., an indole-3-acetic acid-producing bacterium isolated from green foxtail, Setaria viridis . Curr Microbiol 2022; 79:1–8 [View Article] [PubMed]
    [Google Scholar]
  43. Dahal RH, Chaudhary DK, Kim J, Kim DU, Kim J. Genome insight and description of previously uncultured N2-fixing bacterium Rhizobium terricola sp. nov., isolated from forest rhizospheric soil by using modified culture method. Diversity 2022; 14:733 [View Article]
    [Google Scholar]
  44. Gong Z-L, Deng Y, Jiang Z-M, Liu L-Q, Yu L-Y et al. Shinella lacus sp. nov., a novel microcystin-degrading alphaproteobacterium containing the bla carbapenemase gene. Int J Syst Evol Microbiol 2022; 72:11 [View Article] [PubMed]
    [Google Scholar]
  45. Gao R, Zheng J, Lu W, Ke X, Chen M et al. Shinella oryzae sp. nov., a novel zearalenone-resistant bacterium isolated from rice paddy soil. Antonie Van Leeuwenhoek 2022; 115:573–587 [View Article] [PubMed]
    [Google Scholar]
  46. Arya AS, Hang MTH, Eiteman MA. Isolation and Characterization of Levoglucosan-Metabolizing Bacteria. Appl Environ Microbiol 2022; 88:e0186821 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005856
Loading
/content/journal/ijsem/10.1099/ijsem.0.005856
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error