1887

Abstract

The taxonomic relationship of SE3 and BIT-GX5 was re-evaluated. The type strains of the two species shared 99.9 % 16S rRNA gene sequence similarity, and whole genome sequence comparisons showed that the two species shared a 86.3 % digital DNA‒DNA hybridization (dDDH) value, a 98.5 % average nucleotide identity (ANI) score and a 98.2 % average amino acid identity (AAI) value. These values were higher than the recommend novel species recognition threshold values of 16S rRNA gene similarity of 98.6 %, dDDH cutoff value of 70 %, and ANI and AAI cutoff values of 95–96 %. In addition, the phylogenetic tree based on the 16S rRNA gene sequences as well as the phylogenomics tree based on whole genomes supported these two strains being closely related. Based on the principle of priority, we propose that is a later heterotypic synonym of .

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award NRF-2020R111A2072308)
    • Principle Award Recipient: LingminJiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005848
2023-05-12
2024-05-01
Loading full text...

Full text loading...

References

  1. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  2. Schumann P, Weiss N, Stackebrandt E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 2001; 51:1007–1010 [View Article] [PubMed]
    [Google Scholar]
  3. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  4. Oh M, Kim JH, Yoon JH, Schumann P, Kim W. Cellulosimicrobium arenosum sp. nov., isolated from marine sediment sand. Curr Microbiol 2018; 75:901–906 [View Article] [PubMed]
    [Google Scholar]
  5. Schumann P, Stackebrandt E. Cellulosimicrobium. In Bergey’s Manual of Systematics of Archaea and Bacteria Bergey’s Manual Trust; 2015 pp 1–9 [View Article]
    [Google Scholar]
  6. Brown JM, Steigerwalt AG, Morey RE, Daneshvar MI, Romero LJ et al. Characterization of clinical isolates previously identified as Oerskovia turbata: proposal of Cellulosimicrobium funkei sp. nov. and emended description of the genus Cellulosimicrobium. Int J Syst Evol Microbiol 2006; 56:801–804 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon JH, Kang SJ, Schumann P, Oh TK. Cellulosimicrobium terreum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007; 57:2493–2497 [View Article] [PubMed]
    [Google Scholar]
  8. Hu L, Xia M, Gao X, Huo YX, Yang Y. Cellulosimicrobium composti sp. nov., a thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 2021; 71:71 [View Article]
    [Google Scholar]
  9. Aviles FA, Kyndt JA. Cellulosimicrobium fucosivorans sp. nov., isolated from San Elijo lagoon, contains a fucose metabolic pathway linked to carotenoid production. Arch Microbiol 2021; 203:4525–4538 [View Article] [PubMed]
    [Google Scholar]
  10. Stackebrandt E, Schumann P, Cui XL. Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov. Int J Syst Evol Microbiol 2004; 54:685–688 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  15. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  18. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  20. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  24. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  25. Bhattacharjee A, Bayzid MS. Machine learning based imputation techniques for estimating phylogenetic trees from incomplete distance matrices. BMC Genomics 2020; 21:497 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005848
Loading
/content/journal/ijsem/10.1099/ijsem.0.005848
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error