1887

Abstract

An endophytic actinobacterium, strain PIP175, was isolated from the root sample of a native apricot tree () growing on the Bedford Park campus of Flinders University, Adelaide, South Australia. This strain is a Gram stain-positive, aerobic actinobacterium with well-developed substrate mycelia. Aerial mycelia rarely produce spores and the spore chain is spiral. Strain PIP175 showed the highest 16S rRNA gene sequence similarity to DSM 41644 (99.4 %). Other closely related phylogenetic representatives include DSM 41902 (98.3 %), NBRC 13846 (97.6 %), subsp. NRRL B-1220 (97.5 %) and NBRC 14600 (97.4 %). The major cellular fatty acid of this strain was iso-C and the major menaquinone was MK-9(H). The whole-cell sugar contained galactose, glucose and mannose. Chemotaxonomic data confirmed that strain PIP175 belonged to the genus . Digital DNA–DNA hybridization, average nucleotide identity based on and OrthoANIu results between strain PIP175 and DSM 41644 were 60.0, 94.1 and 94.9 %, respectively. Genotypic and phenotypic data and genome analysis results allowed the differentiation of strain PIP175 from its closest species with validly published names. Strain PIP175 showed good activity against methicillin-resistant 03120385. Genome mining of strain PIP175 revealed biosynthetic genes encoding proteins relating to antibiotic production, plant growth promotion and biodegradation enzymes. The name proposed for the new species is sp. nov. The type strain is PIP175 (=DSM 103379=TBRC 6026).

Funding
This study was supported by the:
  • Mahasarakham University (Award 2022_Fast track)
    • Principle Award Recipient: OnumaKaewkla
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005834
2023-04-24
2024-05-14
Loading full text...

Full text loading...

References

  1. Kämpfer P. Streptomyces Waksman and Henrici 1943,339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME et al. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 4 New York: Springer; 2012 pp 1455–1804
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  3. Khushboo ., Kumar P, Dubey KK, Usmani Z, Sharma M et al. Biotechnological and industrial applications of Streptomyces metabolites. Biofuels Bioprod Bioref 2022; 16:244–264 [View Article]
    [Google Scholar]
  4. Singh R, Dubey AK. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 2018; 9:1767 [View Article]
    [Google Scholar]
  5. Liu N, Wang H, Liu M, Gu Q, Zheng W et al. Streptomyces alni sp. nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 2009; 59:254–258 [View Article]
    [Google Scholar]
  6. Phongsopitanun W, Kanchanasin P, Sripreechasak P, Rueangsawang K, Athipornchai A et al. Potential antibiotic production of Streptomyces justiciae sp. nov., isolated from the root of Justicia subcoriacea. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  7. Kaewkla O, Franco CMM. Streptomyces roietensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of Jasmine rice, Oryza sativa KDML 105. Int J Syst Evol Microbiol 2017; 67:4868–4872 [View Article]
    [Google Scholar]
  8. Li K, Guo Y, Wang J, Wang Z, Zhao J et al. Streptomyces aquilus sp. nov., a novel actinomycete isolated from a Chinese medicinal plant. Int J Syst Evol Microbiol 2020; 70:1912–1917 [View Article] [PubMed]
    [Google Scholar]
  9. Peng C, Zhuang X, Gao C, Wang Z, Zhao J et al. Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.). Antonie van Leeuwenhoek 2021; 114:823–833 [View Article]
    [Google Scholar]
  10. Kaewkla O, Franco CMM. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 2013; 65:384–393 [View Article] [PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  13. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Tajima F, Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1984; 1:269–285 [View Article] [PubMed]
    [Google Scholar]
  17. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101:11030–11035 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  19. Zhang H. DNA short-insert library construction protocol for illumina HiSeq 2500/4000/X ten or NovaSeq v1. Protocols.io 2021 [View Article]
    [Google Scholar]
  20. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article]
    [Google Scholar]
  21. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  25. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  26. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  31. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR et al. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 2017; 110:563–583 [View Article]
    [Google Scholar]
  32. Kimura MA. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  33. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  34. Atlas RM. Handbook of Microbiological Media Boca Raton: CRC Press; 1993 p 1079
    [Google Scholar]
  35. Kornerup J, Wanscher H. Methuen Handbook of Colour. 3rd edition, Edited by D. Pavey E. Muthuen, London: 1978
    [Google Scholar]
  36. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59:992–997 [View Article]
    [Google Scholar]
  37. Kaewkla O, Franco CMM. Actinomycetospora callitridis sp. nov., an endophytic actinobacterium isolated from the surface-sterilised root of an Australian native pine tree. Antonie van Leeuwenhoek 2019; 112:331–337 [View Article]
    [Google Scholar]
  38. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. IntJ Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  39. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973; 19:1035–1048 [View Article]
    [Google Scholar]
  40. Bousfield IJ, Keddie RM, Dando TR, Shaw S. Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. Chemical method in bacterial systematics. Technical Series 1985; 20:221–236
    [Google Scholar]
  41. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  42. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  44. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical note# 101; 2001 http://www.midi-inc.com
  45. Kaewkla O, Franco CMM. Genome mining and description of Streptomyces albidus sp. nov., an endophytic actinobacterium with antibacterial potential. Antonie van Leeuwenhoek 2021; 114:539–551 [View Article]
    [Google Scholar]
  46. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  47. UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [View Article]
    [Google Scholar]
  48. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  49. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 2008; 58:200–214 [View Article]
    [Google Scholar]
  50. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [View Article]
    [Google Scholar]
  51. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  52. Fukuda DS, Mynderse JS, Baker PJ, Berry DM, Boeck LD et al. A80915, a new antibiotic complex produced by Streptomyces aculeolatus. Discovery, taxonomy, fermentation, isolation, characterization, and antibacterial evaluation. J Antibiot 1990; 43:623–633 [View Article]
    [Google Scholar]
  53. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  54. Banskota AH, Mcalpine JB, Sørensen D, Aouidate M, Piraee M et al. Isolation and identification of three new 5-alkenyl-3,3(2H)-furanones from two streptomyces species using a genomic screening approach. J Antibiot 2006; 59:168–176 [View Article]
    [Google Scholar]
  55. Guo Y-Z, Yang XM, Li YY. Effect of alkylresorcinols on autophagy, migration, and invasion of HepG2 cells. J Food Sci 2019; 84:3063–3068 [View Article]
    [Google Scholar]
  56. Oishi K, Yamamoto S, Itoh N, Nakao R, Yasumoto Y et al. Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J Nutr 2015; 145:199–206 [View Article] [PubMed]
    [Google Scholar]
  57. Cheng YB, Jensen PR, Fenical W. Cytotoxic and antimicrobial napyradiomycins from two marine-derived, MAR 4 Streptomyces strains. European J Org Chem 2013; 18:10
    [Google Scholar]
  58. Van Thuoc D, Hien TT, Sudesh K. Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. Ann Microbiol 2019; 69:819–828 [View Article]
    [Google Scholar]
  59. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  60. Hozzein WN, Goodfellow M. Streptomyces synnematoformans sp. nov., a novel actinomycete isolated from a sand dune soil in Egypt. Int J Syst Evol Microbiol 2007; 57:2009–2013 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005834
Loading
/content/journal/ijsem/10.1099/ijsem.0.005834
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error