1887

Abstract

Two strains of identified from different experiments are proposed to represent new species. Strain WLa1L2M3 was isolated from the digestive tract of an beetle larva. Strain 09-1422 was isolated from a cage housing the stick insect . Sequence analysis of the 16S rRNA and genes found both strains to be similar but not identical to other species. Whole-genome sequencing suggested the isolates represent new species, with average nucleotide identity values ranging from 74.6 to 80.5 %. Genome-to-genome distance calculations produced values below 25.3 %, and digital DNA–DNA hybridization values were 13.7–29.9 %, all suggesting they are distinct species. The genomic DNA G+C content of WLa1L2M3 is approximately 32.53 %, and of 09-1422 is approximately 35.89 %. The predominant cellular fatty acids of strain WLa1L2M3 are C iso, summed feature 9 (C 10OH or C iso ω6), C iso 3OH, summed feature 3 (C ω7 and/or C ω6c), C iso 3OH, C anteiso and C iso, and those of strain 09-1422 are C iso, summed feature 3 (C ω7c and/or C ω6), C iso 3OH, C anteiso, C iso 3OH, C ω7, C 2OH and C. In addition, physiological and biochemical tests revealed phenotypic differences from related type strains. These cumulative data indicate that the two strains represent novel species of the genus for which the names sp. nov. and sp. nov. are proposed with WLa1L2M3 (=BCRC 81350=JCM 35215=CIP 112035) and 09-1422 (=UCDFST 09-1422=BCRC 81359=CIP 112165), as type strains, respectively.

Funding
This study was supported by the:
  • Ministry of Science and Technology, Taiwan (Award MOST-109-2311-B-002-016-MY3)
    • Principle Award Recipient: MatanShelomi
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005813
2023-04-19
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/4/ijsem005813.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005813&mimeType=html&fmt=ahah

References

  1. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes . Front Microbiol 2019; 10:2083 [View Article]
    [Google Scholar]
  2. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  3. Dahal RH, Chaudhary DK, Kim D-U, Pandey RP, Kim J. Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J Antibiot 2021; 74:115–123 [View Article]
    [Google Scholar]
  4. Kim KK, Kim MK, Lim JH, Park HY, Lee S-T. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen nov as Elizabethkingia meningoseptica comb nov and Elizabethkingia miricola comb nov. Int J Syst Evol Microbiol 2005; 55:1287–1293 [View Article]
    [Google Scholar]
  5. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article]
    [Google Scholar]
  6. Yang F, Liu H-M, Zhang R, Chen D-B, Wang X et al. Chryseobacterium shandongense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:1860–1865 [View Article]
    [Google Scholar]
  7. Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Hsieh Y-T et al. Chryseobacterium endophyticum sp. nov., isolated from a maize leaf. Int J Syst Evol Microbiol 2017; 67:570–575 [View Article]
    [Google Scholar]
  8. Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium . Syst Appl Microbiol 2014; 37:342–350 [View Article]
    [Google Scholar]
  9. Pires C, Carvalho MF, De Marco P, Magan N, Castro PML. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010; 60:402–407 [View Article]
    [Google Scholar]
  10. Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM et al. Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2011; 61:2162–2166 [View Article]
    [Google Scholar]
  11. Nde AL, Charimba G, Hitzeroth A, Oosthuizen L, Steyn L et al. Chryseobacterium pennae sp. nov., isolated from poultry feather waste. Int J Syst Evol Microbiol 2021; 71:004912 [View Article]
    [Google Scholar]
  12. Bernardet JF, Vancanneyt M, Matte-Tailliez O, Grisez L, Tailliez P et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 2005; 28:640–660 [View Article]
    [Google Scholar]
  13. Lin S-Y, Hameed A, Wen C-Z, Liu Y-C, Shen F-T et al. Chryseobacterium echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65:3985–3990 [View Article]
    [Google Scholar]
  14. Dugas JE, Zurek L, Paster BJ, Keddie BA, Leadbetter ER. Isolation and characterization of a Chryseobacterium strain from the gut of the American cockroach, Periplaneta americana . Arch Microbiol 2001; 175:259–262 [View Article]
    [Google Scholar]
  15. Kämpfer P, Chandel K, Prasad GBKS, Shouche YS, Veer V. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int J Syst Evol Microbiol 2010; 60:2387–2391 [View Article]
    [Google Scholar]
  16. Zhao Y, Wang Y, Li DH, Deng Y, Yang H. Chryseobacterium reticulitermitis sp. nov., isolated from the gut of Reticulitermes aculabialis . Int J Syst Evol Microbiol 2017; 67:1698–1702 [View Article]
    [Google Scholar]
  17. Kämpfer P, Arun AB, Young C-C, Chen W-M, Sridhar KR et al. Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2010; 60:1765–1769 [View Article]
    [Google Scholar]
  18. Tan H, Miao R, Liu T, Yang L, Yang Y et al. A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb Biotechnol 2018; 11:381–398 [View Article]
    [Google Scholar]
  19. Shelomi M, Chen M-J. Culturing-enriched metabarcoding analysis of the Oryctes rhinoceros gut microbiome. Insects 2020; 11:782 [View Article]
    [Google Scholar]
  20. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  22. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  23. Shelomi M, Sitepu IR, Boundy-Mills KL, Kimsey LS. Review of the gross anatomy and microbiology of the phasmatodea digestive tract. J Orthoptera Res 2015; 24:29–40 [View Article]
    [Google Scholar]
  24. Matu A, Lum Nde A, Oosthuizen L, Hitzeroth A, Badenhorst M et al. Draft genome sequences of seven Chryseobacterium type strains. Microbiol Resour Announc 2019; 8:e01518-18 [View Article]
    [Google Scholar]
  25. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  27. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  28. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–5 [View Article]
    [Google Scholar]
  29. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article]
    [Google Scholar]
  30. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  32. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article]
    [Google Scholar]
  33. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  35. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  36. Farris JS. Estimating phylogenetic trees from distance matrices. The American Naturalist 1972; 106:645–668 [View Article]
    [Google Scholar]
  37. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article]
    [Google Scholar]
  38. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article]
    [Google Scholar]
  39. Herzog P, Winkler I, Wolking D, Kämpfer P. Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008; 58:26–33
    [Google Scholar]
  40. Indu B, Kumar G, Smita N, Shabbir A, Sasikala C et al. Chryseobacterium candidae sp. nov., isolated from a yeast (Candida tropicalis). Int J Syst Evol Microbiol 2020; 70:93–99 [View Article]
    [Google Scholar]
  41. Wu Y-F, Wu Q-L, Liu S-J. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum . Int J Syst Evol Microbiol 2013; 63:913–919 [View Article]
    [Google Scholar]
  42. Sutcliffe IC, Trujillo ME, Goodfellow M. A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie van Leeuwenhoek 2012; 101:13–20 [View Article]
    [Google Scholar]
  43. Vandamme P, Sutcliffe I. Out with the old and in with the new: time to rethink twentieth century chemotaxonomic practices in bacterial taxonomy. Int J Syst Evol Microbiol 2021; 71:005127 [View Article]
    [Google Scholar]
  44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article]
    [Google Scholar]
  45. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 2023; 51:D678–D689 [View Article]
    [Google Scholar]
  46. Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH et al. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol 2014; 52:33–50 [View Article]
    [Google Scholar]
  47. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  48. Reichenbach H, Kohl W, Böttger-Vetter A, Achenbach H. Flexirubin-type pigments in Flavobacterium . Arch Microbiol 1980; 126:291–293 [View Article]
    [Google Scholar]
  49. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article]
    [Google Scholar]
  50. Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB et al. Type I secretion systems-one mechanism for all?. Microbiol Spectr 2019; 7: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005813
Loading
/content/journal/ijsem/10.1099/ijsem.0.005813
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error