1887

Abstract

An actinomycete strain K14-0274 was isolated from the root of Blume subsp. (H. Hara) H. Ohashi J. Murata collected in Japan. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated thatK14-0274 could be distinguished from the members of all known genera, although it represented a member of the family . K14-0274 produced sporangium-like spherical vesicles with spores on white aerial mycelia. MK-9 (H) and MK-9 (H) were the major menaquinones. The whole-cell hydrolysates contained madurose, glucose, mannose, rhamnose and ribose. The cell-wall amino acids comprise -alanine, -alanine, -glutamic acid and -diaminopimelic acid. The -acyl type of muramic acid was acetyl. Mycolic acids were not detected. Phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside were detected. The predominant fatty acids were iso-C, 10-methyl-C and C. The G+C content of the genomic DNA was 69.7 mol%. On the basis of morphological, phylogenetic and chemotaxonomic characteristics, strain K14-0427 represents a novel genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is K14-0247 (=NBRC 114594 =TBRC 12948).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005803
2023-03-24
2024-05-14
Loading full text...

Full text loading...

References

  1. Inahashi Y, Matsumoto A, Danbara H, Ōmura S, Takahashi Y. Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol 2010; 60:2652–2658 [View Article]
    [Google Scholar]
  2. Matsumoto A, Kawaguchi Y, Nakashima T, Iwatsuki M, Ōmura S et al. Rhizocola hellebori gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae containing 3,4-dihydroxydiaminopimelic acid in the cell-wall peptidoglycan. Int J Syst Evol Microbiol 2014; 64:2706–2711 [View Article]
    [Google Scholar]
  3. Matsumoto A, Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot 2017; 70:514–519 [View Article]
    [Google Scholar]
  4. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 1990; 136:19–36 [View Article]
    [Google Scholar]
  5. Stackebrandt E, Rainey FA, Ward-rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  6. Zhi X-Y, Li W-J, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [View Article] [PubMed]
    [Google Scholar]
  7. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  8. Hayakawa M, Nonomura H. Humic acid–vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  9. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  10. Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 1948; 56:107–114 [View Article]
    [Google Scholar]
  11. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  12. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  13. Uchida K, Aida K. Acyl type of bacterial cell wall: Its simple identification by colorimetric method. J Gen Appl Microbiol 1977; 23:249–260 [View Article]
    [Google Scholar]
  14. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  15. Také A, Nakashima T, Inahashi Y, Shiomi K, Takahashi Y et al. Analyses of the cell-wall peptidoglycan structures in three genera Micromonospora, Catenuloplanes, and Couchioplanes belonging to the family Micromonosporaceae by derivatization with FDLA and PMP using LC/MS. J Gen Appl Microbiol 2016; 62:199–205 [View Article] [PubMed]
    [Google Scholar]
  16. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837 [View Article] [PubMed]
    [Google Scholar]
  17. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  19. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  20. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note, MIDI Inc 1990; 101:
    [Google Scholar]
  21. Kawamoto I, Oka T, Nara T. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 1981; 146:527–534 [View Article] [PubMed]
    [Google Scholar]
  22. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  23. Lechevalier MP, De Bievre C, Lechevalier HA. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  24. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article]
    [Google Scholar]
  25. Matsumoto A, Fukuda A, Inahashi Y, Ōmura S, Takahashi Y. Actinoallomurus radicium sp. nov., isolated from the roots of two plant species. Int J Syst Evol Microbiol 2012; 62:295–298 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  33. Marcel M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011; 17:10–12
    [Google Scholar]
  34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  35. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  36. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014; 24:1384–1395 [View Article] [PubMed]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  38. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article]
    [Google Scholar]
  39. Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 2004; 6:938–947 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  43. Stackebrandt E, Kroppenstedt RM, Jahnke K-D, Kemmerling C, Gürtler H. Transfer of Streptosporangium viridogriseum (Okuda et al. 1966), Streptosporangium viridogriseum subsp. kofuense (Nonomura and Ohara 1969), and Streptosporangium albidum (Furumai et al. 1968) to Kutzneria gen. nov. as Kutzneria viridogrisea comb. nov., Kutzneria kofuensis comb. nov., and Kutzneria albida comb. nov., respectively, and emendation of the genus Streptosporangium. Int J Syst Bacteriol 1994; 44:265–269 [View Article]
    [Google Scholar]
  44. Zhang Y-Q, Liu H-Y, Yu L-Y, Lee J-C, Park D-J et al. Sinosporangium album gen. nov., sp. nov., a new member of the suborder Streptosporangineae. Int J Syst Evol Microbiol 2011; 61:592–597 [View Article]
    [Google Scholar]
  45. Suriyachadkun C, Ngaemthao W, Chunhametha S, Thawai C, Sanglier J-J et al. Sinosporangium siamense sp. nov., isolated from soil and emended description of the genus Sinosporangium. Int J Syst Evol Microbiol 2014; 64:2828–2833 [View Article] [PubMed]
    [Google Scholar]
  46. Ara I, Kudo T. Sphaerosporangium gen. nov., a new member of the family Streptosporangiaceae, with descriptions of three new species as Sphaerosporangium melleum sp. nov., Sphaerosporangium rubeum sp. nov. and Sphaerosporangium cinnabarinum sp. nov., and transfer of Streptosporangium viridialbum Nonomura and Ohara 1960 to Sphaerosporangium viridialbum comb. nov. Actinomycetologica 2007; 21:11–21 [View Article]
    [Google Scholar]
  47. Cao Y-R, Jiang Y, Xu L-H, Jiang CL. Sphaerisporangium flaviroseum sp. nov. and Sphaerisporangium album sp. nov., isolated from forest soil in China. Int J Syst Evol Microbiol 2009; 59:1679–1684 [View Article]
    [Google Scholar]
  48. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005803
Loading
/content/journal/ijsem/10.1099/ijsem.0.005803
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error