1887

Abstract

A novel bacterial strain, designated BS-T2-15, isolated from forest soil in close proximity to decaying oak wood, was characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences as well as phylogenomic analyses based on coding sequences of 340 concatenated core proteins indicated that strain BS-T2-15 forms a distinct and robust lineage in the branch of the order . The amino acid identity and the percentage of conserved proteins between the genome of strain BS-T2-15 and genomes of closely related type strains ranged from 64.27 to 66.57% and from 40.89 to 49.27 %, respectively, providing genomic evidence that strain BS-T2-15 represents a new genus. Its cells are Gram-stain-negative, aerobic, motile by a polar flagellum, rod-shaped and form incrusted white to ivory colonies. Optimal growth is observed at 20–22 °C, pH 6 and 0% NaCl. The predominant fatty acids of strain BS-T2-15 are C ω7, C and C 2-OH. Its polar lipid profile consists of a mixture of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol and its main respiratory quinone is ubiquinone 8. The estimated size of its genome is 6.28 Mb with a DNA G+C content of 69.56 mol%. Therefore, on the basis of phenotypic and genotypic properties, the new strain BS-T2-15 represents a novel genus and species for which the name gen. nov., sp. nov., is proposed. The type strain is BS-T2-15 (DSM 113115=UBOCC-M-3373).

Funding
This study was supported by the:
  • Université de Bretagne Occidentale
    • Principle Award Recipient: SophieMieszkin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005793
2023-03-08
2024-05-07
Loading full text...

Full text loading...

References

  1. Ulyshen MD. Wood decomposition as influenced by invertebrates. Biol Rev Camb Philos Soc 2016; 91:70–85 [View Article]
    [Google Scholar]
  2. Tláskal V, Brabcová V, Větrovský T, Jomura M, López-Mondéjar R et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 2021; 6:e01078-20 [View Article]
    [Google Scholar]
  3. Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 2016; 92:11 [View Article] [PubMed]
    [Google Scholar]
  4. Mieszkin S, Richet P, Bach C, Lambrot C, Augusto L et al. Oak decaying wood harbors taxonomically and functionally different bacterial communities in sapwood and heartwood. Soil Biol Biochem 2021; 155:108160 [View Article]
    [Google Scholar]
  5. Liu Y, Du J, Pei T, Du H, Feng G-D et al. Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol 2022; 45:126352 [View Article]
    [Google Scholar]
  6. Bedics A, Táncsics A, Tóth E, Banerjee S, Harkai P et al. Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie van Leeuwenhoek 2022; 115:1113–1128 [View Article]
    [Google Scholar]
  7. Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C et al. Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 2007; 57:1295–1303 [View Article]
    [Google Scholar]
  8. Malmqvist Å, Welander T, Moore E, Ternström A, Molin G et al. Ideonella dechloratans gen.nov., sp.nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 1994; 17:58–64 [View Article]
    [Google Scholar]
  9. Mieszkin S, Pouder E, Uroz S, Simon-Colin C, Alain K. Acidisoma silvae sp. nov. and Acidisoma cellulosilytica sp. nov., two acidophilic bacteria isolated from decaying wood, hydrolyzing cellulose and producing poly-3-hydroxybutyrate. Microorganisms 2021; 9:2053 [View Article]
    [Google Scholar]
  10. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  11. Tindall BJ. Lipid composition of Halobacterium lacus profundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  12. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  13. Jeon CO, Park W, Ghiorse WC, Madsen EL. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 2004; 54:93–97 [View Article] [PubMed]
    [Google Scholar]
  14. Blümel S, Busse HJ, Stolz A, Kämpfer P. Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 2001; 51:1831–1837 [View Article] [PubMed]
    [Google Scholar]
  15. Seemann T, Booth T. BARNAP: BAsic Rapid Ribosomal RNA Predictor [Internet] Berlin: GitHub; 2013
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  19. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  20. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008; 36:W465–9 [View Article] [PubMed]
    [Google Scholar]
  21. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  22. Charbonnier F, Forterre P, Erauso G, Prieur D. Purification of plasmids from thermophilic and hyperthermophilic archaebacteria. In Robb FT, Place AR, DasSarma S, Schreier HJ, Fleischmann EM. eds Archaea: A Laboratory Manual Woodbury, NY, USA: Cold Spring Harbor Laboratory Press; 1995 pp 87–90
    [Google Scholar]
  23. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res 2020; 48:D579–D589 [View Article] [PubMed]
    [Google Scholar]
  26. Alteio LV, Schulz F, Seshadri R, Varghese N, Rodriguez-Reillo W et al. Complementary metagenomic approaches improve reconstruction of microbial diversity in a forest soil. mSystems 2020; 5:e00768-19 [View Article]
    [Google Scholar]
  27. Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M et al. Candidatus Methylumidiphilus drives peaks in methanotrophic relative abundance in stratified lakes and ponds across Northern landscapes. Front Microbiol 2021; 12:669937 [View Article]
    [Google Scholar]
  28. Garcia SL, Mehrshad M, Buck M, Tsuji JM, Neufeld JD et al. Freshwater Chlorobia exhibit metabolic specialization among cosmopolitan and endemic populations. mSystems 2021; 6:e01196-20 [View Article]
    [Google Scholar]
  29. Rissanen AJ, Saarela T, Jäntti H, Buck M, Peura S et al. Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiol Ecol 2021; 97:fiaa252 [View Article]
    [Google Scholar]
  30. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  31. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  32. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  33. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a Maximum-Likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article]
    [Google Scholar]
  34. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022; 38:5315–5316 [View Article]
    [Google Scholar]
  35. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  37. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  38. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  40. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  41. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  42. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475–19 [View Article]
    [Google Scholar]
  43. Chen WM, Chen LC, Sheu DS, Tsai JM, Sheu SY. Ideonella livida sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2020; 70:4942–4950 [View Article] [PubMed]
    [Google Scholar]
  44. Sheu SY, Hsieh TY, Chen WM. Aquincola rivuli sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 2019; 69:2226–2232 [View Article] [PubMed]
    [Google Scholar]
  45. Spring S, Kampfer P, Ludwig W, Schleifer KH. Polyphasic characterization of the genus Leptothrix: new descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst Appl Microbiol 1996; 19:634–643 [View Article]
    [Google Scholar]
  46. Willems A, Gillis M, De Ley J. Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Int J Syst Bacteriol 1991; 41:65–73 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005793
Loading
/content/journal/ijsem/10.1099/ijsem.0.005793
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error