1887

Abstract

The genus belongs to the family (order Lactobacillales) and is closely related to the genus . Currently, 19 species of the genus have been validly named. In this study, we isolated strain G314F from the common green bottle fly collected in Germany. Sequencing of its almost-complete 16S rRNA gene revealed that the isolate belongs to the genus , being closely related to SS1994 with high sequence identity (99.50 %), followed by D7T301 (98.86 %), SS1995 (98.71 %), DSM 21459 (98.64 %), 2B-2 (98.64 %) and CD276 (98.64 %). Genome sequencing of strain G314F was performed by a combination of Illumina and Oxford Nanopore technology, yielding a circular genome with a size of 2 139 468 bp and an 11 kb plasmid. Average nucleotide identity and digital DNA–DNA hybridization values were calculated between G314F and its closest-related taxa, and found to be <91 % and <40 %, respectively, thus strongly supporting that strain G314F represents a novel species of the genus . Phylogenetic and core protein-based phylogenomic trees revealed that G314F was closely related to a group of three species, SS1994, D7T301 and DSM 21459. Comparatively, the genome of G314F is the smallest in the group of the four related species, and the biochemical pathway comparison using BlastKOALA revealed that G314F has lost some amino acid biosynthetic proteins; however, it has gained enzymes for carbohydrate metabolism. Phenotypically, G314F was consistent with other species of the genus including a negative catalase reaction and non-motility. Using the polyphasic approach, our data supports that the isolate represents a new species, for which we propose the name G314F (=DSM 112651= CCM 9164).

Funding
This study was supported by the:
  • Alexander von Humboldt-Stiftung
    • Principle Award Recipient: JuanGuzman
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005787
2023-03-31
2024-05-11
Loading full text...

Full text loading...

References

  1. Collins MD, Ash C, Farrow JAE, Wallbanks S, Williams AM. 16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J Appl Bacteriol 1989; 67:453–460 [View Article]
    [Google Scholar]
  2. Zhang Z-G, Ye Z-Q, Yu L, Shi P. Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 2011; 11:1 [View Article]
    [Google Scholar]
  3. Hashimoto H, Kawakami H, Tomokane K, Yoshii Z, Hahn G et al. Isolation and characterization of motile group N streptococci. J Fac Appl Biol Sci Hiroshima Univ 1979; 18:207–216
    [Google Scholar]
  4. Lawson PA, Foster G, Falsen E, Ohlén M, Collins MD. Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int J Syst Bacteriol 1999; 49 Pt 3:1251–1254 [View Article]
    [Google Scholar]
  5. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  7. Kim S-M, Byeon Y-S, Yang HL, Kim IS, Lee SD. Vagococcus allomyrinae sp. nov. and Enterococcus larvae sp. nov., isolated from larvae of Allomyrina dichotoma. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  8. Killer J, Švec P, Sedláček I, Černohlávková J, Benada O et al. Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2014; 64:731–737 [View Article]
    [Google Scholar]
  9. Hyun D-W, Tak EJ, Kim PS, Bae J-W. Description of Vagococcus coleopterorum sp. nov., isolated from the intestine of the diving beetle, Cybister lewisianus, and Vagococcus hydrophili sp. nov., isolated from the intestine of the dark diving beetle, Hydrophilus acuminatus, and emended description of the genus Vagococcus. J Microbiol 2021; 59:132–141 [View Article]
    [Google Scholar]
  10. Pot B, Devriese LA, Hommez J, Miry C, Vandemeulebroecke K et al. Characterization and identification of Vagococcus fluvialis strains isolated from domestic animals. J Appl Bacteriol 1994; 77:362–369 [View Article]
    [Google Scholar]
  11. Matajira CEC, Poor AP, Moreno LZ, Monteiro MS, Dalmutt AC et al. Vagococcus sp. a porcine pathogen: molecular and phenotypic characterization of strains isolated from diseased pigs in Brazil. J Infect Dev Ctries 2020; 14:1314–1319 [View Article] [PubMed]
    [Google Scholar]
  12. Teixeira LM, Carvalho MG, Merquior VL, Steigerwalt AG, Brenner DJ et al. Phenotypic and genotypic characterization of Vagococcus fluvialis, including strains isolated from human sources. J Clin Microbiol 1997; 35:2778–2781 [View Article] [PubMed]
    [Google Scholar]
  13. Matsuo T, Mori N, Kawai F, Sakurai A, Toyoda M et al. Vagococcus fluvialis as a causative pathogen of bloodstream and decubitus ulcer infection: Case report and systematic review of the literature. J Infect Chemother 2021; 27:359–363 [View Article]
    [Google Scholar]
  14. Jadhav KP, Pai PG. A rare infective endocarditis caused by Vagococcus fluvialis. J Cardiol Cases 2019; 20:129–131 [View Article] [PubMed]
    [Google Scholar]
  15. Garcia V, Abat C, Rolain JM. Report of the first Vagococcus lutrae human infection, Marseille, France. New Microbes New Infect 2016; 9:56–57 [View Article] [PubMed]
    [Google Scholar]
  16. Román L, Real F, Padilla D, El Aamri F, Déniz S et al. Cytokine expression in head-kidney leucocytes of European sea bass (Dicentrarchus labrax L.) after incubation with the probiotic Vagococcus fluvialis L-21. Fish Shellfish Immunol 2013; 35:1329–1332 [View Article] [PubMed]
    [Google Scholar]
  17. Sorroza L, Padilla D, Acosta F, Román L, Grasso V et al. Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet Microbiol 2012; 155:369–373 [View Article] [PubMed]
    [Google Scholar]
  18. Rosenbergová Z, Oftedal TF, Ovchinnikov KV, Thiyagarajah T, Rebroš M et al. Identification of a novel two-peptide lantibiotic from Vagococcus fluvialis. Microbiol Spectr 2022; 10:e0095422 [View Article]
    [Google Scholar]
  19. Gao J, Bao H, Xin M, Liu Y, Li Q et al. Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31. J Zhejiang Univ Sci B 2006; 7:186–192 [View Article]
    [Google Scholar]
  20. Martins J Jr, Solomon SE, Mikheyev AS, Mueller UG, Ortiz A et al. Nuclear mitochondrial-like sequences in ants: evidence from Atta cephalotes (Formicidae: Attini). Insect Mol Biol 2007; 16:777–784 [View Article] [PubMed]
    [Google Scholar]
  21. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol biotechnol 1994; 3:7881515
    [Google Scholar]
  22. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res 2013; 41:W29–33 [View Article] [PubMed]
    [Google Scholar]
  23. Guzman J, Sombolestani AS, Poehlein A, Daniel R, Cleenwerck I et al. Entomobacter blattae gen. nov., sp. nov., a new member of the Acetobacteraceae isolated from the gut of the cockroach Gromphadorhina portentosa. Int J Syst Evol Microbiol 2019; 71: [View Article]
    [Google Scholar]
  24. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  26. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article]
    [Google Scholar]
  27. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  28. Rossi-Tamisier M, Benamar S, Raoult D, Fournier P-E. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 2015; 65:1929–1934 [View Article] [PubMed]
    [Google Scholar]
  29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  30. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  31. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  32. Guzman J, Ortúzar M, Poehlein A, Daniel R, Trujillo ME et al. Agromyces archimandritae sp. nov., isolated from the cockroach Archimandrita tessellata. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  33. Salvà Serra F, Salvà-Serra F, Svensson-Stadler L, Busquets A, Jaén-Luchoro D et al. A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. Protoc Exchange 2018084 [View Article]
    [Google Scholar]
  34. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  36. Rodriguez Jimenez A, Dechamps E, Giaux A, Goetghebuer L, Bauwens M et al. The sponges Hymeniacidon perlevis and Halichondria panicea are reservoirs of antibiotic-producing bacteria against multi-drug resistant Staphylococcus aureus. J Appl Microbiol 2021; 131:706–718 [View Article] [PubMed]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  39. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  40. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  41. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  42. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  43. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  44. Lin H. SilentGene/bio-py: bio-py v1.0 version v1.0. Zenodo 2021 [View Article]
    [Google Scholar]
  45. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  46. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article] [PubMed]
    [Google Scholar]
  47. Wullschleger S, Jans C, Seifert C, Baumgartner S, Lacroix C et al. Vagococcus teuberi sp. nov., isolated from the Malian artisanal sour milk fènè. Syst Appl Microbiol 2018; 41:65–72 [View Article] [PubMed]
    [Google Scholar]
  48. Shewmaker PL, Whitney AM, Gulvik CA, Humrighouse BW, Gartin J et al. Vagococcus bubulae sp. nov., isolated from ground beef, and Vagococcus vulneris sp. nov., isolated from a human foot wound. Int J Syst Evol Microbiol 2019; 69:2268–2276 [View Article] [PubMed]
    [Google Scholar]
  49. Tak EJ, Kim HS, Lee J-Y, Kang W, Hyun D-W et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017; 67:3398–3402 [View Article] [PubMed]
    [Google Scholar]
  50. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article]
    [Google Scholar]
  51. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article]
    [Google Scholar]
  52. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  53. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article]
    [Google Scholar]
  54. Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J 2014; 8:1553–1565 [View Article] [PubMed]
    [Google Scholar]
  55. Gerhardt P. Methods for General and Molecular Bacteriology In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (eds) Washington, D.C: American Society for Microbiology; 1994
    [Google Scholar]
  56. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990; 273:164–172 [View Article] [PubMed]
    [Google Scholar]
  57. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005787
Loading
/content/journal/ijsem/10.1099/ijsem.0.005787
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error