1887

Abstract

A endospore-forming bacterium, designated strain KQZ6P-2, was isolated from surface-sterilized bark of the mangrove plant , collected from Maowei Sea Mangrove Nature Reserve in Guangxi Zhuang Autonomous Region, China. Strain KQZ6P-2 was able to grow at NaCl concentrations in the range of 0–3 % (w/v) with optimum growth at 0–1 % (w/v) NaCl. Growth occurred at 20–42 °C (optimal growth at 30–37 °C) and pH 5.5–6.5 (optimal growth at pH 6.5). The 16S rRNA gene sequence similarity between strain KQZ6P-2 and its closest phylogenetic neighbour JCM 9905 was 98.2 %. Phylogenetic analyses using 16S rRNA gene sequences showed that strain KQZ6P-2 formed a distinct lineage with JCM 9905. The draft genome of strain KQZ6P-2 was 5 937 633 bp in size and its DNA G+C content was 47.2mol%. Comparative genome analysis revealed that the average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values among strain KQZ6P-2 and its related species were below the cut-off levels of 95, 70 and 95.5%, respec-tively. The cell-wall peptidoglycan of strain KQZ6P-2 contained -diaminopimelic acid as the diagnostic diamino acid. Major cellular fatty acids were anteiso-C and C. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, an unidentified aminolipid and five unidentified lipids. Based on phylogenetic, phenotypic and chemotaxonomic data, strain KQZ6P-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KQZ6P-2 (=MCCC 1K07172 =JCM 34931).

Funding
This study was supported by the:
  • Zunyi Medical University Doctoral Research Funding Project (Award F-988)
    • Principle Award Recipient: Ling-JieMeng
  • Beijing Natural Science Foundation (Award 5224038)
    • Principle Award Recipient: Fei-NaLi
  • National Natural Science Foundation of China (Award 81960642)
    • Principle Award Recipient: LiTuo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005780
2023-03-08
2024-05-12
Loading full text...

Full text loading...

References

  1. De Vos P, Ludwig W, Schleifer K-H. Paenibacillaceae fam. nov. in list of new names and new combinations previously effectively, but not validly, published, validation list no. 132. Int J Syst Evol Microbiol 2010; 60:469–472 [View Article]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  3. De Vos P, Ludwig W, Schleifer K-H, Whitman WB. Family IV Paenibacillaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 2009 p 269
    [Google Scholar]
  4. Narsing Rao MP, Dong Z-Y, Kan Y, Zhang K, Fang B-Z et al. Description of Paenibacillus antri sp. nov. and Paenibacillus mesophilus sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2020; 70:1048–1054 [View Article]
    [Google Scholar]
  5. Zhang Y, Zhuang J, Pang H, Wang Y, Li Y et al. Paenibacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2019; 69:2354–2359 [View Article] [PubMed]
    [Google Scholar]
  6. Kim KH, Seo YL, Baek JH, Jin HM, Jeon CO. Paenibacillus agri sp. nov., isolated from soil. Int J Syst Evol Microbiol 2022; 71:004981
    [Google Scholar]
  7. Im WT, Yi KJ, Lee SS, Moon HI, Jeon CO et al. Paenibacillus konkukensis sp. nov., isolated from animal feed. Int J Syst Evol Microbiol 2017; 67:2343–2348 [View Article] [PubMed]
    [Google Scholar]
  8. Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 2008; 58:682–687 [View Article] [PubMed]
    [Google Scholar]
  9. Niu L, Tang T, Ma Z, Song L, Zhang K et al. Paenibacillus yunnanensis sp. nov., isolated from Pu’er tea. Int J Syst Evol Microbiol 2015; 65:3806–3811 [View Article] [PubMed]
    [Google Scholar]
  10. Ham YJ, Jeong JW, Lee DH, Kim SB. Paenibacillus artemisiicola sp. nov. and Paenibacillus lignilyticus sp. nov., two new endophytic bacterial species isolated from plant roots. Int J Syst Evol Microbiol 2022; 72:005270 [View Article] [PubMed]
    [Google Scholar]
  11. Qi SS, Cnockaert M, Carlier A, Vandamme PA. Paenibacillus foliorum sp. nov., Paenibacillus phytohabitans sp nov., Paenibacillus plantarum sp. nov., Paenibacillus planticolens sp. nov., Paenibacillus phytorum sp. nov. and Paenibacillus germinis sp. nov., isolated from the Arabidopsis thaliana phyllosphere. Int J Syst Evol Microbiol 2022; 71:004781
    [Google Scholar]
  12. Ash C, Priest FG. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov in validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no.51. Int J Syst Bacteriol 1994; 44:852
    [Google Scholar]
  13. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  14. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 1997; 47:299–306 [View Article] [PubMed]
    [Google Scholar]
  15. Trinh NH, Kim J. Paenibacillus piri sp. nov., isolated from urban soil. Int J Syst Evol Microbiol 2020; 70:656–661 [View Article] [PubMed]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley Sons; 1991 pp 115–147
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Lim HJ, Lee EH, Yoon Y, Chua B, Son A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J Appl Microbiol 2016; 120:379–387 [View Article] [PubMed]
    [Google Scholar]
  26. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  27. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  28. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  30. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [View Article] [PubMed]
    [Google Scholar]
  31. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  33. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  34. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  35. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, DE: MIDI inc; 1990
    [Google Scholar]
  37. Tuo L, Dong Y-P, Habden X, Liu J-M, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65:1604–1610 [View Article] [PubMed]
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  40. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article]
    [Google Scholar]
  41. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  42. Paek J, Bai L, Shin Y, Kim H, Kook J-K. Description of Paenibacillus dokdonensis sp. nov., a new bacterium isolated from soil. Int J Syst Evol Microbiol 2021; 71:004707
    [Google Scholar]
  43. Logan NA, De Clerck E, Lebbe L, Verhelst A, Goris J et al. Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 2004; 54:1071–1076 [View Article] [PubMed]
    [Google Scholar]
  44. Meehan C, Bjourson AJ, McMullan G. Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 2001; 51:1681–1685 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005780
Loading
/content/journal/ijsem/10.1099/ijsem.0.005780
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error