1887

Abstract

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, designated C281, was isolated from seawater sampled at the Marshallese seamount chain. Results of 16S rRNA gene analysis revealed that strain C281 was most closely related to CZ-AZ5 with 92.7 % sequence similarity. Phylogenetic analysis indicated that the new isolate represented a novel species by forming a distinctive lineage within the family . The DNA G+C content of strain C281 was 38.4 mol%. The genome sizes of strain C281 and the reference strain CZ-AZ5 were 5 962 917 and 5 395 999 bp, respectively. The average nucleotide identity and DNA–DNA hybridization values between strains C281 and CZ-AZ5 were found to be low (69.3 and 17.6 %, respectively). Different functional genes were found in the genome of strain C281, such as , polysaccharide utilization loci and linear azol(in)e-containing peptide cluster coding genes. The NaCl range for growth was 0.5–15.0 %. Positive results were obtained for hydrolysis of Tween 60 and urease. MK-7 was the sole respiratory quinone. The major fatty acids were C 6 and/or C 7, iso-C and iso-C F. The major polar lipids of strain C281 were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and five unidentified glycolipids. On the basis of its taxonomic characteristics, the isolate represents a novel species of the genus , for which the name sp. nov. (type strain C281=KCTC 92171=MCCC M27001) is proposed.

Funding
This study was supported by the:
  • Scientific Research Project Initiating of Hunan University of Arts and Science (Award E07021003)
    • Principle Award Recipient: GuoLi-Li
  • Natural Science Foundation of China (Award 41876182)
    • Principle Award Recipient: XuXue-Wei
  • China Ocean Mineral Resources Research and Development Association (Award DY135-B2-10)
    • Principle Award Recipient: XuXue-Wei
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005774
2023-03-30
2024-04-28
Loading full text...

Full text loading...

References

  1. Li X, Liu Y, Chen Z, Liu LZ, Liu ZP et al. Membranicola marinus gen. nov., sp. nov.,a new member of the family Saprospiraceae isolated from a biofilter in a recirculating aquaculture system. Int J Syst Evol Microbiol 2016; 66:1275–1280 [View Article]
    [Google Scholar]
  2. Deshmukh UB, Oren A. Proposal of Membranihabitans gen. nov. as a replacement name for the illegitimate prokaryotic generic name Membranicola Li et al. 2016. Int J Syst Evol Microbiol 2022; 72:005576 [View Article]
    [Google Scholar]
  3. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. Family III. Saprospiraceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. eds Bergey’s Manual of Systematic Bacteriology, 2nd. edn vol 4 New York: Springer; 2010 p 358 [View Article]
    [Google Scholar]
  4. Gross J. Über freilebende Spironemaceen. Mitteilungen aus der Zoologischen Station zu Neapel 1911; 20:188–203
    [Google Scholar]
  5. Mcilroy SJ, Nielsen PH. The family Saprospiraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes, 4th. edn New York: Springer; 2014 pp 863–889 [View Article]
    [Google Scholar]
  6. Hosoya S, Arunpairojana V, Suwannachart C, Kanjana-Opas A, Yokota A. Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of thailand. Int J Syst Evol Microbiol 2006; 56:2931–2935 [View Article]
    [Google Scholar]
  7. Hosoya S, Arunpairojana V, Suwannachart C, Kanjana-Opas A, Yokota A. Aureispira maritima sp. nov., isolated from marine barnacle debris. Int J Syst Evol Microbiol 2007; 57:1948–1951 [View Article] [PubMed]
    [Google Scholar]
  8. Hahn MW, Schauer M. Candidatus Aquirestis calciphila” and “Candidatus Haliscomenobacter calcifugiens”, filamentous, planktonic bacteria inhabiting natural lakes. Int J Syst Evol Microbiol 2007; 57:936–940 [View Article]
    [Google Scholar]
  9. Xia Y, Kong Y, Thomsen TR, Halkjaer Nielsen P. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Appl Environ Microbiol 2008; 74:2229–2238 [View Article]
    [Google Scholar]
  10. Kondrotaite Z, Valk LC, Petriglieri F, Singleton C, Nierychlo M et al. Diversity and ecophysiology of the genus OLB8 and other abundant uncultured Saprospiraceae genera in global wastewater treatment systems. Front Microbiol 2022; 13:917553 [View Article] [PubMed]
    [Google Scholar]
  11. Snaidr J, Fuchs B, Wallner G, Wagner M, Schleifer KH et al. Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ Microbiol 1999; 1:125–135 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon J, Katsuta A, Kasai H. Rubidimonas crustatorum gen. nov., sp. nov., a novel member of the family Saprospiraceae isolated from a marine crustacean. Antonie van Leeuwenhoek 2012; 101:461–467 [View Article]
    [Google Scholar]
  13. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  14. Mac Faddin JF. Biochemical Tests for Identification of Medical Bacteria Baltimore: MD:Williams & Wilkins; 1976
    [Google Scholar]
  15. Huang MM, Guo LL, Wu YH, Lai QL, Shao ZZ et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola. Int J Syst Evol Microbiol 2018; 68:409–415 [View Article]
    [Google Scholar]
  16. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  17. Rainey FA, Silva J, Nobre MF, Silva MT, da Costa MS. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 2003; 53:35–41 [View Article] [PubMed]
    [Google Scholar]
  18. Hildebrand DC, Palleroni NJ, Hendson M, Toth J, Johnson JL. Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 1994; 44:410–415 [View Article] [PubMed]
    [Google Scholar]
  19. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM. Genus I. Vibrio Pacini 1854, 411AL. In Garrity GM, Brenner DJ, NR K, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, The Proteobacteria, Part B, The Gammaproteobacteria, 2nd. edn vol 2 New York: Springer; 2005 p 494
    [Google Scholar]
  20. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article]
    [Google Scholar]
  21. Guo LL, Wu YH, Xu XW, Huang CJ, Xu YY et al. Actibacterium pelagium sp. nov., a novel alphaproteobacterium, and emended description of the genus Actibacterium. Int J Syst Evol Microbiol 2017; 67:5080–5086 [View Article]
    [Google Scholar]
  22. Sasser M. Technical Note 101: Identificationof bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  24. Komagata K, Susuki KI. Lipid and cell-wall systematics in bacterial systematics. Methods Microbiol 1988; 19:161–207 [View Article]
    [Google Scholar]
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing eztaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716 [View Article]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  32. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41 [View Article] [PubMed]
    [Google Scholar]
  33. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  34. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  35. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  36. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  37. Saitou NM, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K. MEGA7:Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  40. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  41. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article] [PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  43. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  44. Wang TJ, Liu ZW, Feng X, Zou QH, Du ZJ. Rhodohalobacter mucosus sp. nov., isolated from a marine solar saltern. Arch Microbiol 2021; 203:2419–2424 [View Article] [PubMed]
    [Google Scholar]
  45. Han SB, Yu YH, Ju Z, Li Y, Zhang R et al. Rhodohalobacter barkolensis sp. nov., isolated from a saline lake and emended description of the genus Rhodohalobacter. Int J Syst Evol Microbiol 2018; 68:1949–1954 [View Article]
    [Google Scholar]
  46. Hassan MT, van der Lelie D, Springael D, Römling U, Ahmed N et al. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 1999; 238:417–425 [View Article] [PubMed]
    [Google Scholar]
  47. Jiang C, Jiang H, Zhang T, Lu Z, Mao X. Enzymatic verification and comparative analysis of carrageenan metabolism pathways in marine bacterium Flavobacterium algicola. Appl Environ Microbiol 2022; 88:e0025622 [View Article] [PubMed]
    [Google Scholar]
  48. Li XY, Li LX, Li Y, Zhou RC, Li B et al. Complete genome sequencing of Peyer’s patches-derived Lactobacillus taiwanensis CLG01, a potential probiotic with antibacterial and immunomodulatory activity. BMC Microbiol 2021; 21:68 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005774
Loading
/content/journal/ijsem/10.1099/ijsem.0.005774
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error