1887

Abstract

A strictly anaerobic hyperthermophilic archaeon, designated strain IOH2, was isolated from a deep-sea hydrothermal vent (Onnuri vent field) area on the Central Indian Ocean Ridge. Strain IOH2 showed high 16S rRNA gene sequence similarity to MM 739 (99.42 %), DSM 10322 (99.28 %), P5 (99.21 %), DSM 5473 (99.13 %), ‘ T7324 (99.13 %), TY (98.92 %) and Bio-pl-0405IT2 (98.01 %), with all other strains showing lower than 98 % similarity. The average nucleotide identity and DNA–DNA hybridization values were highest between strain IOH2 and MM 739 (79.33 and 15.00 %, respectively); these values are much lower than the species delineation cut-offs. Cells of strain IOH2 were coccoid, 1.0–1.2 µm in diameter and had no flagella. Growth ranges were 60–85 °C (optimum at 80 °C), pH 4.5–8.5 (optimum at pH 6.3) and 2.0–6.0 % (optimum at 4.0 %) NaCl. Growth of strain IOH2 was enhanced by starch, glucose, maltodextrin and pyruvate as a carbon source, and elemental sulphur as an electron acceptor. Through genome analysis of strain IOH2, arginine biosynthesis related genes were predicted, and growth of strain IOH2 without arginine was confirmed. The genome of strain IOH2 was assembled as a circular chromosome of 1 946 249 bp and predicted 2096 genes. The DNA G+C content was 39.44 mol%. Based on the results of physiological and phylogenetic analyses, sp. nov. is proposed with type strain IOH2 (=MCCC 4K00089=KCTC 25190).

Funding
This study was supported by the:
  • Ministry of Oceans and Fisheries, National Marine Biodiversity Institute of Korea (Award 20170411, 2022M01100)
    • Principle Award Recipient: ApplicableNot
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005760
2023-04-06
2024-05-14
Loading full text...

Full text loading...

References

  1. Ronimus RS, Reysenbach AL, Musgrave DR, Morgan HW. The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch Microbiol 1997; 168:245–248 [View Article]
    [Google Scholar]
  2. Stetter KO. Extremophiles and their adaptation to hot environments. FEBS Lett 1999; 452:22–25 [View Article] [PubMed]
    [Google Scholar]
  3. Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA et al. Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 2001; 5:85–91 [View Article] [PubMed]
    [Google Scholar]
  4. Schönheit P, Schäfer T. Metabolism of hyperthermophiles. World J Microbiol Biotechnol 1995; 11:26–57 [View Article] [PubMed]
    [Google Scholar]
  5. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD. The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 1983; 4:88–94 [View Article]
    [Google Scholar]
  6. Fiala G, Stetter KO. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 1986; 145:56–61 [View Article]
    [Google Scholar]
  7. Takai K, Sugai A, Itoh T, Horikoshi K. Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 2000; 50 Pt 2:489–500 [View Article]
    [Google Scholar]
  8. Li XG, Tang HZ, Zhang WJ, Qi XQ, Qu ZG et al. Thermococcus aciditolerans sp. nov., a piezotolerant, hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent chimney in the Southwest Indian ridge. Int J Syst Evol Microbiol 2021; 71:004934
    [Google Scholar]
  9. Alain K, Vince E, Courtine D, Maignien L, Zeng X et al. Thermococcus henrietii sp. nov., a novel extreme thermophilic and piezophilic sulfur-reducing archaeon isolated from a deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 2021; 71:004895 [View Article]
    [Google Scholar]
  10. Courtine D, Vince E, Maignien L, Philippon X, Gayet N et al. Thermococcus camini sp. nov., a hyperthermophilic and piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 2021; 71:004853 [View Article]
    [Google Scholar]
  11. Lim JK, Kim YJ, Yang J-A, Namirimu T, Yang S-H et al. Thermococcus indicus sp. nov., a Fe(III)-reducing hyperthermophilic archaeon isolated from the Onnuri Vent Field of the Central Indian Ocean ridge. J Microbiol 2020; 58:260–267 [View Article] [PubMed]
    [Google Scholar]
  12. Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP et al. New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch Microbiol 1995; 163:29–34 [View Article]
    [Google Scholar]
  13. Sato T, Fukui T, Atomi H, Imanaka T. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2003; 185:210–220 [View Article] [PubMed]
    [Google Scholar]
  14. Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM et al. Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 1998; 48 Pt 1:23–29 [View Article] [PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  16. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  17. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  20. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  21. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  23. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  24. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  25. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 2012; 28:2223–2230 [View Article] [PubMed]
    [Google Scholar]
  26. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article]
    [Google Scholar]
  27. Edgar RC. MUSCLE v5 enables improved estimates of phylogenetic tree confidence by ensemble328 bootstrapping. bioRxiv 2021
    [Google Scholar]
  28. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  29. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  30. Shen W, Ren H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J Genet Genomics 2021; 48:844–850 [View Article]
    [Google Scholar]
  31. Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S et al. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 1995; 164:390–395 [View Article] [PubMed]
    [Google Scholar]
  32. Arab H, Völker H, Thomm M. Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol 2000; 50 Pt 6:2101–2108 [View Article] [PubMed]
    [Google Scholar]
  33. Neuner A, Jannasch HW, Belkin S, Stetter KO. Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 1990; 153:205–207 [View Article]
    [Google Scholar]
  34. Canganella F, Jack Jones W. Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Curr Microbiol 1994; 28:299–306 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005760
Loading
/content/journal/ijsem/10.1099/ijsem.0.005760
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error