1887

Abstract

Cells from strain GE09, isolated from an artificially immersed nanofibrous cellulose plate in the deep sea, were Gram-stain-negative, motile, aerobic cells that could grow with cellulose as their only nutrient. Strain GE09 was placed among members of , in the , with Z1, a marine degrader of agar, as the closest relative (97.4 % similarity). The average nucleotide identity and digital DNA–DNA hybridization values between GE09 and Z1 were 72.5 and 21.2 %, respectively. Strain GE09 degraded cellulose, xylan and pectin, but not starch, chitin and agar. The different carbohydrate-active enzymes encoded in the genomes of strain GE09 and Z1 highlights their differences in terms of target energy sources and reflects their isolation environments. The major cellular fatty acids of strain GE09 were C 7, C and C 7. The polar lipid profile showed phosphatidylglycerol and phosphatidylethanolamine. The major respiratory quinone was Q-8. Based on these distinct taxonomic characteristics, strain GE09 represents a new species in the genus , for which we propose the name sp. nov. (type strain GE09=DSM 113420=JCM 35003).

Funding
This study was supported by the:
  • Kyokuto Pharmaceutical Industrial
    • Principle Award Recipient: ShigeruDeguchi
  • Kyokuto Pharmaceutical Industrial
    • Principle Award Recipient: MikikoTsudome
  • Japan Prize Foundation
    • Principle Award Recipient: MikikoTsudome
  • Shimadzu Science Foundation
    • Principle Award Recipient: ShigeruDeguchi
  • Japan Society for the Promotion of Science (Award JP19K15956)
    • Principle Award Recipient: MikakoTachioka
  • Japan Society for the Promotion of Science (Award JP25850127)
    • Principle Award Recipient: MikikoTsudome
  • Japan Society for the Promotion of Science (Award JP25120512)
    • Principle Award Recipient: MikikoTsudome
  • Japan Society for the Promotion of Science (Award JP25120512)
    • Principle Award Recipient: ShigeruDeguchi
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005748
2023-03-02
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/3/ijsem005748.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005748&mimeType=html&fmt=ahah

References

  1. Tsudome M, Tachioka M, Miyazaki M, Uchimura K, Tsuda M et al. An ultrasensitive nanofiber-based assay for enzymatic hydrolysis and deep-sea microbial degradation of cellulose. iScience 2022; 25:104732 [View Article] [PubMed]
    [Google Scholar]
  2. Spring S, Scheuner C, Göker M, Klenk H-P. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article] [PubMed]
    [Google Scholar]
  3. Liao H, Lin X, Li Y, Qu M, Tian Y. Reclassification of the taxonomic framework of orders Cellvibrionales, Oceanospirillales, Pseudomonadales, and Alteromonadales in class Gammaproteobacteria through phylogenomic tree analysis. mSystems 2020; 5:e00543-20 [View Article]
    [Google Scholar]
  4. DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H et al. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 2008; 190:5455–5463 [View Article]
    [Google Scholar]
  5. Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M et al. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet 2008; 4:e1000087 [View Article]
    [Google Scholar]
  6. Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS et al. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One 2009; 4:e6085 [View Article]
    [Google Scholar]
  7. Guo L-Y, Li D-Q, Sang J, Chen G-J, Du Z-J. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2016; 66:1593–1599 [View Article]
    [Google Scholar]
  8. Deguchi S, Tsudome M, Shen Y, Konishi S, Tsujii K et al. Preparation and characterisation of nanofibrous cellulose plate as a new solid support for microbial culture. Soft Matter 2007; 3:1170–1175 [View Article] [PubMed]
    [Google Scholar]
  9. Tsudome M, Deguchi S, Tsujii K, Ito S, Horikoshi K. Versatile solidified nanofibrous cellulose-containing media for growth of extremophiles. Appl Environ Microbiol 2009; 75:4616–4619 [View Article] [PubMed]
    [Google Scholar]
  10. Fujiwara Y, Kawato M, Noda C, Kinoshita G, Yamanaka T et al. Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipicola pacifica: a trend in evolution from extra- to intracellular symbiosis. PLoS One 2010; 5:e11808 [View Article]
    [Google Scholar]
  11. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  12. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  14. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  17. Luo R, Liu B, Xie Y, Li Z, Huang W et al. Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2015; 4:30 [View Article]
    [Google Scholar]
  18. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  19. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  20. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  21. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  22. Hutcheson SW, Zhang H, Suvorov M. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar Drugs 2011; 9:645–665 [View Article] [PubMed]
    [Google Scholar]
  23. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003; 12:1652–1662 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  25. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506–577 [View Article]
    [Google Scholar]
  26. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 2011; 62:567–590 [View Article] [PubMed]
    [Google Scholar]
  27. Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y et al. Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 2008; 58:1128–1133 [View Article]
    [Google Scholar]
  28. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge University Press; 1993 [View Article]
    [Google Scholar]
  29. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1988; 19:161–207
    [Google Scholar]
  30. MIDI Sherlock, Microbial Identification System, Operating Manual, version 3.0 Newark, DE: 1999 p MIDI
    [Google Scholar]
  31. Christie WW. Structural analysis of fatty acids. In Christie WW. eds Advances in Lipid Methodology Dundee: Oily Press; 1997 pp 119–169
    [Google Scholar]
  32. Miyazaki M, Sakai S, Yamanaka Y, Saito Y, Takai K et al. Spirochaeta psychrophila sp. nov., a psychrophilic spirochaete isolated from subseafloor sediment, and emended description of the genus Spirochaeta. Int J Syst Evol Microbiol 2014; 64:2798–2804 [View Article]
    [Google Scholar]
  33. Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 2002; 52:2261–2269 [View Article]
    [Google Scholar]
  34. Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM et al. Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 2021; 71:004627 [View Article]
    [Google Scholar]
  35. Ling S-K, Xia J, Liu Y, Chen G-J, Du Z-J. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol 2017; 67:3778–3783 [View Article]
    [Google Scholar]
  36. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW et al. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 2005; 55:1545–1549 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005748
Loading
/content/journal/ijsem/10.1099/ijsem.0.005748
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error