Full text loading...
Abstract
Six novel bacterial strains, designated CY22T, CY357, LJ419T, LJ53, CY399T and CY107 were isolated from soil samples collected from the Qinghai–Tibetan Plateau, PR China. Cells were aerobic, rod-shaped, yellow-pigmented, catalase- and oxidase-positive, Gram-stain-negative, non-motile and non-spore-forming. All strains were psychrotolerant and could grow at 0 °C. The results of phylogenetic and phylogenomic analyses, based on 16S rRNA gene sequences and core genomic genes, indicated that the three strain pairs (CY22T/CY357, LJ419T/LJ53 and CY399T/CY107) were closely related to members of the genus Dyadobacter and clustered tightly with two species with validly published names, Dyadobacter alkalitolerans 12116T and Dyadobacter psychrophilus BZ26T. Values of digital DNA–DNA hybridization between genome sequences of the isolates and other strains from the GenBank database in the genus Dyadobacter were far below the 70.0 % threshold. The genomic DNA G+C content of these six strains ranged from 45.2 to 45.8 %. The major cellular fatty acids of all six strains were iso-C15 : 0 and summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c). MK-7 was the only respiratory quinone, and phosphatidylethanolamine was the predominant polar lipid for strains CY22T, LJ419T and CY399T. On the basis of the phenotypic, phylogenetic and genomic evidence presented, these six strains represent three novel members of the genus Dyadobacter , for which the names Dyadobacter chenhuakuii sp. nov., Dyadobacter chenwenxiniae sp. nov. and Dyadobacter fanqingshengii sp. nov. are proposed. The type strains are CY22T (= GDMCC 1.3045T = KCTC 92299T), LJ419T (= GDMCC 1.2872T = JCM 33794T) and CY399T (= GDMCC 1.3052T = KCTC 92306T), respectively.
- Received:
- Accepted:
- Published Online:
Funding
-
Research Units of Discovery of Unknown Bacteria and Function
(Award 2018RU010)
- Principle Award Recipient: JianguoXu
-
National Key R&D Program of China
(Award 2019YFC1200505)
- Principle Award Recipient: LiyunLiu
-
National Key R&D Program of China
(Award 2019YFC1200501)
- Principle Award Recipient: JingYang