1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming and yellow-pigment-producing bacterium, designated as Sx8-5, was isolated from stem tissue of Carey in Kanchanaburi Province Thailand. The strain exhibited tricalcium phosphate solubilizing activity. Its taxonomic position was investigated using a polyphasic approach. Sx8-5 grew at 25–37 °C (optimum 30 °C), pH 6–9 (optimum 7) and with 0 and 1% NaCl (optimum 0 %). According to the 16S rRNA gene phylogeny, Sx8-5 represents a member of genus and shared the highest sequence similarities to LL02 of 99.4 % and shared sequence similarities with other species of the genus of less than 99.4 %. The whole-genome size was 5.7 Mb, comprised of one contig, with a DNA G+C content of 66 %. The average nucleotide identity using BLASTn (ANIb) or MUMMER (ANIm) values for whole genome comparisons between Sx8-5 and LL02 and six closely related type strains were 72.33–82.14 % and 83.82–87.38 %, respectively, and the digital DNA–DNA hybridization (dDDH) values ranged from 21.0 to 28.6% when compared with the type strains of the members of the genus . Major fatty acids were summed feature 8 (C 7 and/or C6), C and summed feature 3 (C 7 and/or C 6), respectively. Polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, unidentified phospholipids and unidentified polar lipids. The major isoprenoid quinone was Q-10. According to results obtained using a polyphasic approach, Sx8-5 represents a novel species of the genus , the name sp. nov. is proposed. The type strain is Sx8-5 (=JCM 35076 =TBRC 15600).

Funding
This study was supported by the:
  • Chulalongkorn University
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005746
2023-03-23
2024-05-12
Loading full text...

Full text loading...

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Feng GD, Chen W, Zhang J, Wang YH, Liu Y et al. Novosphingobium silvae sp. nov., isolated from subtropical forest soil. Int J Syst Evol Microbiol 2020; 70:2901–2906 [View Article] [PubMed]
    [Google Scholar]
  4. Le VV, Ko S-R, Lee S-A, Jin L, Ahn C-Y et al. Novosphingobium aquimarinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2020; 70:5911–5917 [View Article] [PubMed]
    [Google Scholar]
  5. Addison SL, Foote SM, Reid NM, Lloyd-Jones G. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 2007; 57:2467–2471 [View Article] [PubMed]
    [Google Scholar]
  6. Gupta SK, Lal D, Lal R. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2009; 59:156–161 [View Article]
    [Google Scholar]
  7. Niharika N, Moskalikova H, Kaur J, Sedlackova M, Hampl A et al. Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2013; 63:667–672 [View Article] [PubMed]
    [Google Scholar]
  8. Kämpfer P, Martin K, McInroy JA, Glaeser SP. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 2015; 65:195–200 [View Article] [PubMed]
    [Google Scholar]
  9. Krishnan R, Menon RR. Likhitha Busse H-J, Tanaka N et al. Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res Microbiol 2017; 168:113–121 [View Article]
    [Google Scholar]
  10. Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Lai W-A et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014; 64:594–598 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang L, Gao JS, Kim SG, Zhang CW, Jiang JQ et al. Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:302–307 [View Article] [PubMed]
    [Google Scholar]
  12. Kämpfer P, Martin K, McInroy JA, Glaeser SP. Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum. Int J Syst Evol Microbiol 2015; 65:2831–2837 [View Article]
    [Google Scholar]
  13. Li Y-Q, Li L, Chen W, Duan Y-Q, Nimaichand S et al. Novosphingobium endophyticum sp. nov. isolated from roots of Glycyrrhiza uralensis. Arch Microbiol 2015; 197:911–918 [View Article]
    [Google Scholar]
  14. Gao S, Zhang Y, Jiang N, Luo L, Li QX et al. Novosphingobium fluoreni sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2015; 65:1409–1414 [View Article] [PubMed]
    [Google Scholar]
  15. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2003; 00:2.3.1-2.3.22 [View Article]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  20. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1-32 [View Article]
    [Google Scholar]
  21. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits of phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  27. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  28. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  29. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  34. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809 [View Article] [PubMed]
    [Google Scholar]
  35. Tindall BJ, Sikorski J, Smibert RA, Krieg N. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Breznak TJ, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology Washington: ASM Press; 2007
    [Google Scholar]
  36. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C et al. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 2005; 71:1685–1693 [View Article]
    [Google Scholar]
  37. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM et al. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 2002; 15:894–906 [View Article] [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark: MIDI Inc; 19901–6
  39. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983; 54:31–36 [View Article]
    [Google Scholar]
  40. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. In Colwell RR, Grigorova R. eds Methods in Microbiology Florida: Academic Press; 1988
    [Google Scholar]
  41. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 2007; 20:619–626 [View Article] [PubMed]
    [Google Scholar]
  43. Svehla G. Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis New York, USA: Longman Inc; 1979
    [Google Scholar]
  44. Gang S, Sharma S, Saraf M, Buck M, Schumacher J. Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC–MS/MS and the Salkowski method. Bio Protoc 2019; 9:e3230 [View Article]
    [Google Scholar]
  45. Rangjaroen C, Sungthong R, Rerkasem B, Teaumroong N, Noisangiam R et al. Untapped endophytic colonization and plant growth-promoting potential of the genus Novosphingobium to optimize rice cultivation. Microbes Environ 2017; 32:84–87 [View Article]
    [Google Scholar]
  46. Zeng Q, Wu X, Wang J, Ding X. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate. J Microbiol Biotechnol 2017; 27:844–855 [View Article]
    [Google Scholar]
  47. Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 2003; 185:4519–4529 [View Article] [PubMed]
    [Google Scholar]
  48. Chen J, Zhao G, Wei Y, Dong Y, Hou L et al. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci Rep 2021; 11:9081 [View Article] [PubMed]
    [Google Scholar]
  49. Song C, Wang W, Gan Y, Wang L, Chang X et al. Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems. J Sci Food Agric 2022; 102:1430–1442 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005746
Loading
/content/journal/ijsem/10.1099/ijsem.0.005746
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error