1887

Abstract

A Gram-negative, aerobic bacterial strain, designated LX-88, was isolated from seleniferous soil in Enshi, Hubei Province, PR China. Strain LX-88oxidized elemental selenium to selenite, and produced carotenoids but not bacteriochlorophyll. The isolate grew optimally at 28 °C, pH 8.0 and with 0.5 % (w/v) NaCl. Phylogenetic analysies of the organism’s 16S rRNA and bacterial core gene set sequences indicated that LX-88 belongs to the genus , and has the highest degree of 16S rRNA gene sequence similarity to MN-1 (97.4 %). The LX-88 genome was 3.4 Mbp and had a G+C content of 63.6 mol%. The average nucleotide identity and digital DNA–DNA hybridization values showed low relatedness (below 95 and 70 %, respectively) between strain LX-88 and other strains in the genus . Ubiquinone-10 was the predominant quinone. The polar lipid profile was dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. The major fatty acid was summed feature 8 (C 7 and/or C 6). These physiological and biochemical tests facilitated the differentiation of strain LX-88 from other members of the genus . The results of this multifaceted taxonomic study indicate that strain LX-88 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is LX-88 (=MCCC 1K08007=LMG 32570).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award No. 31970095)
    • Principle Award Recipient: MingshunLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005726
2023-03-15
2024-05-12
Loading full text...

Full text loading...

References

  1. Liu YH, Fang BZ, Dong ZY, Li L, Mohamad OAA et al. Croceibacterium gen. nov., with description of Croceibacterium ferulae sp. nov., an endophytic bacterium isolated from Ferula sinkiangensis K. M. Shen and reclassification of Porphyrobacter mercurialis as Croceibacterium mercuriale comb. nov. Int J Syst Evol Microbiol 2019; 69:2547–2554 [View Article]
    [Google Scholar]
  2. Xu L, Sun C, Fang C, Oren A, Xu XW. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470–4495 [View Article] [PubMed]
    [Google Scholar]
  3. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:116–121 [View Article] [PubMed]
    [Google Scholar]
  4. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017; 67:909–913 [View Article] [PubMed]
    [Google Scholar]
  5. Zhao Q, Li HR, Han QQ, He AL, Nie CY et al. Altererythrobacter soli sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2017; 67:454–459 [View Article] [PubMed]
    [Google Scholar]
  6. Yuan N, Zeng Y, Feng H, Yu Z, Huang Y. Altererythrobacter xixiisoli sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2017; 67:3655–3659 [View Article] [PubMed]
    [Google Scholar]
  7. Coil DA, Flanagan JC, Stump A, Alexiev A, Lang JM et al. Porphyrobacter mercurialis sp. nov., isolated from a stadium seat and emended description of the genus Porphyrobacter. PeerJ 2015; 3:e1400 [View Article] [PubMed]
    [Google Scholar]
  8. Zhu D, Niu Y, Fan K, Zhang F, Wang Y et al. Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris). Sci Total Environ 2021; 791:148294 [View Article]
    [Google Scholar]
  9. Luo X, Wang Y, Lan Y, An L, Wang G et al. Microbial oxidation of organic and elemental selenium to selenite. Sci Total Environ 2022; 833:155203 [View Article] [PubMed]
    [Google Scholar]
  10. Li J, Zhao G-Z, Long L-J, Wang F-Z, Tian X-P et al. Rhodococcus nanhaiensis sp. nov., an actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2012; 62:2517–2521 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  15. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Harrison P. SPADES - a process algebra for discrete event simulation. J Logic Comput 2000; 10:3–42 [View Article]
    [Google Scholar]
  19. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  20. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article] [PubMed]
    [Google Scholar]
  21. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–7 [View Article] [PubMed]
    [Google Scholar]
  22. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  23. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  26. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  27. Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW. Scanning electron microscopy. Curr Protoc Microbiol 2012; Chapter 2:Unit 2B.2 [View Article]
    [Google Scholar]
  28. Wolfe AJ, Berg HC. Migration of bacteria in semisolid agar. Proc Natl Acad Sci 1989; 86:6973–6977 [View Article]
    [Google Scholar]
  29. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  30. Lee J-S, Lee KC, Chang Y-H, Hong SG, Oh HW et al. Paenibacillus daejeonensis sp. nov., a novel alkaliphilic bacterium from soil. Int J Syst Evol Microbiol 2002; 52:2107–2111 [View Article] [PubMed]
    [Google Scholar]
  31. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  32. Barrow GI, Cowan ST, Feltham RKA, Steel KJ. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge, New York: Cambridge University Press; 1993
    [Google Scholar]
  33. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  34. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids. Newark, DE: MIDI; 1990
  35. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  36. Kates M. Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier; 1986 pp 106–107
    [Google Scholar]
  37. Collins M. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005726
Loading
/content/journal/ijsem/10.1099/ijsem.0.005726
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error