1887

Abstract

A rod-shaped, non-motile, Gram-negative bacterium, strain RS28, was isolated from rice straw used as material for periphyton growth. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain RS28 was affiliated with the genus and had the highest sequence similarity to HMF7856 (96.47 %) and DSM 26907 (96.12 %). Strain RS28 was found to grow at pH 5.5–8.0, 17–40 °C and in the presence of 0–1.5 % (w/v) NaCl. Strain RS28 contained summed feature 3 (comprising C 7 and/or C 6), iso-C and iso-C 3-OH as the major fatty acids (> 10.0 %). The major polar lipids were phosphatidylethanolamine, two unidentified phospholipids, two unidentified aminophospholipids, three unidentified aminolipids and one unidentified lipid. The respiratory quinone was menaquinone 7. The genomic DNA G+C content was 44.7 mol%. Strain RS28 possessed six putative secondary metabolite gene clusters involved in the synthesis of resorcinol, NRPS-like, terpene, lassopeptide, T3PKS and arylpolyene. On the basis of the phenotypic, chemotaxonomic, and phylogenetic characteristics, strain RS28 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RS28 (=KCTC 92039=LMG 32424).

Funding
This study was supported by the:
  • Korea Ministry of Environment (MOE) and the National Research Foundation of Korea (Award 2021R1A2C1005151)
    • Principle Award Recipient: Hee-MockOh
  • Korea Environmental Industry and Technology Institute (Award NIER-2019-04-02-060)
    • Principle Award Recipient: Chi-YongAhn
  • Korea Environmental Industry and Technology Institute (Award 2022003050004)
    • Principle Award Recipient: Chi-YongAhn
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005714
2023-02-15
2024-05-07
Loading full text...

Full text loading...

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58:2046–2050 [View Article] [PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010; 60:134–139 [View Article] [PubMed]
    [Google Scholar]
  4. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2014; 64:1395–1400 [View Article]
    [Google Scholar]
  5. Kim J, Lee B, Chhetri G, Kim I, So Y et al. Identification of Mucilaginibacter conchicola sp. nov., Mucilaginibacter achroorhodeus sp. nov. and Mucilaginibacter pallidiroseus sp. nov. and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2022; 72:005431 [View Article]
    [Google Scholar]
  6. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  7. Zhou Z, Dong Y, Xia X, Wu S, Huang Y et al. Mucilaginibacter terrenus sp. nov., isolated from manganese mine soil. Int J Syst Evol Microbiol 2019; 69:3074–3079 [View Article] [PubMed]
    [Google Scholar]
  8. Yan YQ, Hao YX, He RH, Du ZJ. Mucilaginibacter gilvus sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2019; 69:3885–3890 [View Article] [PubMed]
    [Google Scholar]
  9. Zheng R, Zhao Y, Wang L, Chang X, Zhang Y et al. Mucilaginibacter antarcticus sp. nov., isolated from tundra soil. Int J Syst Evol Microbiol 2016; 66:5140–5144 [View Article] [PubMed]
    [Google Scholar]
  10. Won M, Weon HY, Heo J, Lee D, Han BH et al. Ferruginibacter albus sp. nov., isolated from a mountain soil, and Mucilaginibacter robiniae sp. nov., isolated from a black locust flower, Robinia pseudoacacia. Int J Syst Evol Microbiol 2022; 72:005556 [View Article]
    [Google Scholar]
  11. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014; 64:1736–1742 [View Article]
    [Google Scholar]
  12. Wang ZY, Wang RX, Zhou JS, Cheng JF, Li YH. An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. Bioresour Technol 2020; 297:122389 [View Article] [PubMed]
    [Google Scholar]
  13. Han SI, Lee HJ, Lee HR, Kim KK, Whang KS. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. Int J Syst Evol Microbiol 2012; 62:632–637 [View Article] [PubMed]
    [Google Scholar]
  14. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 2016; 6:25279 [View Article]
    [Google Scholar]
  15. Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010; 60:2451–2457 [View Article]
    [Google Scholar]
  16. Lee SA, Le VV, Ko SR, Lee N, Oh HM et al. Mucilaginibacter inviolabilis sp. nov., isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Int J Syst Evol Microbiol 2019; 71:004668 [View Article]
    [Google Scholar]
  17. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH et al. Cyanobacterial blooms. Nat Rev Microbiol 2018; 16:471–483 [View Article] [PubMed]
    [Google Scholar]
  18. Gubelit YI, Grossart HP. New methods, new concepts: what can be applied to freshwater periphyton?. Front Microbiol 2020; 11:1275 [View Article]
    [Google Scholar]
  19. Ko SR, Srivastava A, Lee N, Jin L, Oh HM et al. Bioremediation of eutrophic water and control of cyanobacterial bloom by attached periphyton. Int J Environ Sci Technol 2019; 16:4173–4180 [View Article]
    [Google Scholar]
  20. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article]
    [Google Scholar]
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  22. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 1977; 74:5463–5467 [View Article]
    [Google Scholar]
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Nei M, Kumar S, Takahashi K. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci 1998; 95:12390–12397 [View Article]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  28. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  30. Ko SR, Le VV, Jin L, Lee SA, Ahn CY et al. Mariniflexile maritimum sp. nov., isolated from seawater of the South Sea in the Republic of Korea. Int J Syst Evol Microbiol 2021; 71:004925 [View Article]
    [Google Scholar]
  31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  32. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  34. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  35. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article]
    [Google Scholar]
  36. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  40. Lee JH, Kim MS, Kang JW, Baik KS, Seong CN. Mucilaginibacter puniceus sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:4549–4554 [View Article] [PubMed]
    [Google Scholar]
  41. Kozubek A, Tyman JHP. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 1999; 99:1–26 [View Article]
    [Google Scholar]
  42. Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 2017; 8:828 [View Article]
    [Google Scholar]
  43. Helfrich EJN, Lin GM, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019; 15:2889–2906 [View Article] [PubMed]
    [Google Scholar]
  44. Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 2015; 48:1909–1919 [View Article] [PubMed]
    [Google Scholar]
  45. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  46. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article] [PubMed]
    [Google Scholar]
  47. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101 Newark. DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematic. In Methods for General and Molecular Bacteriology, 3rd edn. Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  50. Kates M. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids Amsterdam: North-Holland Pub. Co; 1972
    [Google Scholar]
  51. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  52. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005714
Loading
/content/journal/ijsem/10.1099/ijsem.0.005714
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error