1887

Abstract

Acetic acid bacteria (family ) are found in the gut of most insects. Two clades are currently recognized: and a–. The latter group is only found in hymenopteran insects and the described species have been isolated from bees and ants. In this study, two new strains DDB2-T1 (=KACC 21507=LMG 31759) and DM15PD (=CCM 9165=DSM 112731=KACC 22353=LMG 32454) were isolated from wasps collected in the Republic of Korea and Germany, respectively. Molecular and phenotypic analysis revealed that the strains are closely related, with 16S rRNA gene sequences showing 100 % identity and genomic average nucleotide identity (ANI) values ≥99 %. The closest related species based on type strain 16S rRNA gene sequences are , , and (94.8–94.7% identity), whereas the closest related species based on type strain genome analysis are and (ANI values of 68.8 and 68.2 %, respectively). The reconstruction of a phylogenomic tree based on 107 core proteins revealed that the branch leading to DDB2-T1 and DM15PD is localized between and . Further genomic distance metrics such as ANI, percentage of conserved proteins and alignment fraction values were consistent with these strains belonging to a new genus. The key phenotypic characteristics were one MALDI-TOF-MS peak (m/z=4601.9±2.0) and the ability to produce acid from -arabinose. Based on this polyphasic approach, including phylogenetics, phylogenomics, genome distance calculations, ecology and phenotypic characteristics, we propose to name the novel strains gen. nov., sp. nov., with the type strain DDB2-T1 (=KACC 21507=LMG 31759).

Funding
This study was supported by the:
  • National Institute of Agricultural Sciences, Rural Development Administration (Award PJ013549)
    • Principle Award Recipient: Wo KwonSoon
  • LOEWE Centers for Insect Biotechnology and Bioresources
    • Principle Award Recipient: VilcinskasAndreas
  • Alexander von Humboldt-Stiftung
    • Principle Award Recipient: GuzmanJuan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005699
2023-02-07
2024-12-03
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article]
    [Google Scholar]
  2. Gillis M, De Ley J. Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Evol Microbiol 1980; 30:7–27 [View Article]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  4. Komagata K, Iino T, Yamada Y. The family Acetobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin Heidelberg: Springer; 2014 pp 3–78 [View Article]
    [Google Scholar]
  5. Malimas T, Vu HTL, Muramatsu Y, Yukphan P, Tanasupawat S. Systematics of acetic acid bacteria. In Sengun IY. eds Acetic Acid Bacteria: Fundamentals and Food Applications Boca Raton: CRC; pp 3–43 [View Article]
    [Google Scholar]
  6. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76:6963–6970 [View Article] [PubMed]
    [Google Scholar]
  7. Yamada Y. Systematics of Acetic Acid Bacteria. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A. eds Acetic Acid Bacteria: Ecology and Physiology Tokyo: Springer Japan; 2016 pp 1–50 [View Article]
    [Google Scholar]
  8. Siozios S, Moran J, Chege M, Hurst GDD, Paredes JC. Complete reference genome assembly for Commensalibacter sp. Strain AMU001, an acetic acid bacterium isolated from the gut of honey bees. Microbiol Resour Announc 2019; 8:e01459-18 [View Article] [PubMed]
    [Google Scholar]
  9. Martinez AJ, Onchuru TO, Ingham CS, Sandoval-Calderón M, Salem H et al. Angiosperm to Gymnosperm host-plant switch entails shifts in microbiota of the Welwitschia bug, Probergrothius angolensis (Distant, 1902). Mol Ecol 2019; 28:5172–5187 [View Article] [PubMed]
    [Google Scholar]
  10. Servín-Garcidueñas LE, Sánchez-Quinto A, Martínez-Romero E. Draft Genome Sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering monarch butterflies. Genome Announc 2014; 2:e00128–00114 [View Article] [PubMed]
    [Google Scholar]
  11. Guzman J, Sombolestani AS, Poehlein A, Daniel R, Cleenwerck I et al. Entomobacter blattae gen. nov., sp. nov., a new member of the Acetobacteraceae isolated from the gut of the cockroach Gromphadorhina portentosa. Int J Syst Evol Microbiol 2019; 71: [View Article]
    [Google Scholar]
  12. Kim E-K, Kim S-H, Nam H-J, Choi MK, Lee K-A et al. Draft genome sequence of Commensalibacter intestini A911T, a symbiotic bacterium isolated from Drosophila melanogaster intestine. J Bacteriol 2012; 194:1246 [View Article]
    [Google Scholar]
  13. Roh SW, Nam Y-D, Chang H-W, Kim K-H, Kim M-S et al. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol 2008; 74:6171–6177 [View Article] [PubMed]
    [Google Scholar]
  14. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article]
    [Google Scholar]
  15. Hilgarth M, Redwitz J, Ehrmann MA, Vogel RF, Jakob F. Bombella favorum sp. nov. and Bombella mellum sp. nov.,two novel species isolated from the honeycombs of Apis mellifera. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  16. Smith EA, Anderson KE, Corby-Harris V, McFrederick QS, Parish AJ et al. Reclassification of seven honey bee symbiont strains as Bombella apis. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  17. Yun J-H, Lee J-Y, Hyun D-W, Jung M-J, Bae J-W. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int J Syst Evol Microbiol 2017; 67:2184–2188 [View Article] [PubMed]
    [Google Scholar]
  18. Chua K-O, See-Too W-S, Tan J-Y, Song S-L, Yong H-S et al. Oecophyllibacter saccharovorans gen. nov. sp. nov., a bacterial symbiont of the weaver ant Oecophylla smaragdina. J Microbiol 2020; 58:988–997 [View Article]
    [Google Scholar]
  19. Chua K-O, Liew YJM, See-Too W-S, Tan J-Y, Yong H-S et al. Formicincola oecophyllae gen. nov. sp. nov., a novel member of the family Acetobacteraceae isolated from the weaver ant Oecophylla smaragdina. Antonie Van Leeuwenhoek 2022; 115:995–1007 [View Article]
    [Google Scholar]
  20. Miller DL, Smith EA, Newton ILG. A bacterial symbiont protects honey bees from fungal disease. mBio 2021; 12:e00503–00521 [View Article] [PubMed]
    [Google Scholar]
  21. Guzman J, Vilcinskas A. Genome analysis suggests the bacterial family Acetobacteraceae is a source of undiscovered specialized metabolites. Antonie Van Leeuwenhoek 2022; 115:41–58 [View Article] [PubMed]
    [Google Scholar]
  22. Martins J Jr, Solomon SE, Mikheyev AS, Mueller UG, Ortiz A et al. Nuclear mitochondrial-like sequences in ants: evidence from Atta cephalotes (Formicidae: Attini). Insect Mol Biol 2007; 16:777–784 [View Article] [PubMed]
    [Google Scholar]
  23. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994; 3:294–299 [PubMed]
    [Google Scholar]
  24. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res 2013; 41:W29–33 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  27. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  28. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  29. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  30. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  32. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article] [PubMed]
    [Google Scholar]
  33. Leonard AC, Méchali M. DNA replication origins. Cold Spring Harb Perspect Biol 2013; 5:a010116 [View Article] [PubMed]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  36. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  37. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475–02419 [View Article]
    [Google Scholar]
  38. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  39. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  40. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  41. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article] [PubMed]
    [Google Scholar]
  42. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013; 41:e121 [View Article]
    [Google Scholar]
  43. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  44. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  45. Wilson EO, Hölldobler B. Eusociality: origin and consequences. Proc Natl Acad Sci U S A 2005; 102:13367–13371 [View Article] [PubMed]
    [Google Scholar]
  46. Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S et al. Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 2004; 54:2263–2267 [View Article]
    [Google Scholar]
  47. Smith EA, Vuong HQ, Miller DL, Parish AJ, McFrederick QS et al. Draft genome sequences of four Saccharibacter sp. strains Isolated from Native Bees. Microbiol Resour Announc 2020; 9:e00022–00020 [View Article] [PubMed]
    [Google Scholar]
  48. Paulson AR, von Aderkas P, Perlman SJ. Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus). BMC Microbiol 2014; 14:224 [View Article]
    [Google Scholar]
  49. Fernández MDM, Meeus I, Billiet A, Van Nieuwerburgh F, Deforce D et al. Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: deep sequencing, esterase and toxicity tests. Pest Manag Sci 2019; 75:79–86 [View Article] [PubMed]
    [Google Scholar]
  50. Gao X, Niu R, Zhu X, Wang L, Ji J et al. Characterization and comparison of the bacterial microbiota of Lysiphlebia japonica parasitioid wasps and their aphid host Aphis gosypii. Pest Manag Sci 2021; 77:2710–2718 [View Article] [PubMed]
    [Google Scholar]
  51. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S et al. Evolutionary history of the Hymenoptera. Curr Biol 2017; 27:1013–1018 [View Article] [PubMed]
    [Google Scholar]
  52. Piekarski PK, Carpenter JM, Lemmon AR, Moriarty Lemmon E, Sharanowski BJ. Phylogenomic evidence overturns current conceptions of social evolution in wasps (Vespidae). Mol Biol Evol 2018; 35:2097–2109 [View Article] [PubMed]
    [Google Scholar]
  53. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  54. Sasser M. Technical note 101: Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  55. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  56. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  57. Sombolestani AS, Cleenwerck I, Cnockaert M, Borremans W, Wieme AD et al. Novel acetic acid bacteria from cider fermentations: Acetobacter conturbans sp. nov. and Acetobacter fallax sp. nov. Int J Syst Evol Microbiol 2020; 70:6163–6171 [View Article]
    [Google Scholar]
  58. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing spede: high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption–ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437–00419 [View Article]
    [Google Scholar]
  59. Strohalm M, Kavan D, Novák P, Volný M, Havlíček V. MMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82:4648–4651 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005699
Loading
/content/journal/ijsem/10.1099/ijsem.0.005699
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error