1887

Abstract

An actinobacterial strain, designated A5X3R13, was isolated from a compost soil suspension supplemented with extracellular material from a -culture supernatant. The strain was cultured on tenfold-diluted reasoner’s 2A agar. The cells were ovoid-to-rod shaped, non-motile, Gram-stain-positive, oxidase-negative, catalase-positive and had a width of 0.5 µm and a length of 0.8–1.2 µm. The results of both 16S rRNA-based phylogenetic and whole-genome analyses indicate that A5X3R13 forms a distinct lineage within the family (order ). On the basis of the 16S rRNA gene sequence, A5X3R13 was closely related to CC-CFT486 (96.2 %), IR27-S3 (96.2 %), 130 (95.6 %), YIM 730233 (95.5 %), KSL-107 (95.4 %), 9H-4 (95.4 %), Gsoil 161 (95.3 %), and NBRC 14755 (95.2 %). The genome had a length of 4 915 757 bp, and its DNA G+C content was 68.5 mol %. The main fatty acids were 10-methyl C, C, C, C, C and iso-C. The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. MK-9(H) was the predominant respiratory quinone. The peptidoglycan type was A3γ (A41.1) and contained alanine, glycine, glutamic acid and -diaminopimelic acid in a molar ratio of 1.2 : 0.9 : 1.0 : 0.8. On the basis of the results of the phylogenetic and phenotypic analyses and comparisons with other members of the family , strain A5X3R13 is proposed to represent a novel species within a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is A5X3R13 (=DSM 112953=NCCB 100840).

Funding
This study was supported by the:
  • mšmt (Award LTAUSA19028)
    • Principle Award Recipient: OndrejUhlik
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005678
2023-01-24
2024-10-12
Loading full text...

Full text loading...

References

  1. Stewart EJ. Growing unculturable bacteria. J Bacteriol 2012; 194:4151–4160 [View Article] [PubMed]
    [Google Scholar]
  2. Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB et al. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 2006; 59:84–98 [View Article] [PubMed]
    [Google Scholar]
  3. Nikitushkin VD, Demina GR, Kaprelyants AS. Rpf proteins are the factors of reactivation of the dormant forms of Actinobacteria. Biochemistry (Mosc) 2016; 81:1719–1734 [View Article] [PubMed]
    [Google Scholar]
  4. Lopez Marin MA, Strejcek M, Junkova P, Suman J, Santrucek J et al. Exploring the potential of Micrococcus luteus culture supernatant with resuscitation-promoting factor for enhancing the culturability of soil bacteria. Front Microbiol 2021; 12:685263 [View Article] [PubMed]
    [Google Scholar]
  5. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  6. Miller ES, Woese CR, Brenner S. Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 1991; 41:363–368 [View Article]
    [Google Scholar]
  7. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  8. Urzì C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50 Pt 2:529–536 [View Article]
    [Google Scholar]
  9. O’Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O’Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 1982; 133:323–329 [View Article] [PubMed]
    [Google Scholar]
  10. Lopez Marin MA, Suman J, Jani K, Ulbrich P, Cajthaml T et al. Pedomonas mirosovicensis gen. nov., sp. nov., a bacterium isolated from soil with the aid of Micrococcus luteus culture supernatant containing resuscitation-promoting factor. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing. In Erko S, Michael G. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. The R Journal 2016; 8:352 [View Article]
    [Google Scholar]
  14. R Core Team R: a language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing; 2020
    [Google Scholar]
  15. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  16. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  17. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article]
    [Google Scholar]
  18. Wick R, Volkening J, Loman N. Porechop [Internet]. Github: 2017 https://github.com/rrwick/Porechop
  19. Wick R, Menzel P. Filtlong [Internet]. Github: 2017 https://github.com/rrwick/Filtlong
  20. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  21. ONT Ltd medaka: sequence correction provided by ONT research [Internet]. Github: Oxford Nanopore Technologies; 2021 https://github.com/nanoporetech/medaka
  22. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article]
    [Google Scholar]
  23. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article]
    [Google Scholar]
  24. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME COMMUN 2021; 1:16 [View Article]
    [Google Scholar]
  25. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  26. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article]
    [Google Scholar]
  27. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–93 [View Article]
    [Google Scholar]
  28. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  29. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 2020; 48:8883–8900 [View Article]
    [Google Scholar]
  30. Kim E, Hart T. BAGEL2 software [Internet]. Hart Lab: 2020 https://github.com/hart-lab/bagel accessed 1 September 2022
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  32. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article]
    [Google Scholar]
  33. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  34. Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D et al. Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 2008; 15:939–947 [View Article]
    [Google Scholar]
  35. Valdés-Stauber N, Scherer S. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 1994; 60:3809–3814 [View Article]
    [Google Scholar]
  36. Suman J, Zubrova A, Rojikova K, Pechar R, Svec P et al. Pseudogemmobacter bohemicus gen. nov., sp. nov., a novel taxon from the Rhodobacteraceae family isolated from heavy-metal-contaminated sludge. Int J Syst Evol Microbiol 2019; 69:2401–2407 [View Article]
    [Google Scholar]
  37. Coico R. Gram staining. Curr Protoc Microbiol 2005; Appendix 3:Appendix 3C [View Article]
    [Google Scholar]
  38. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  39. Schumann P, Kalensee F, Cao J, Criscuolo A, Clermont D et al. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  40. Rezanka T, Petránková M, Cepák V, Pribyl P, Sigler K et al. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol (Praha) 2010; 55:265–269 [View Article] [PubMed]
    [Google Scholar]
  41. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Dyńska-Kukulska K, Ciesielski W, Zakrzewski R. The use of a new, modified Dittmer–Lester spray reagent for phospholipid determination by the TLC image analysis technique. Biomed Chromatogr 2013; 27:458–465 [View Article]
    [Google Scholar]
  43. Schumann P. 5 - Peptidoglycan Structure. In Rainey F, Oren A. eds Methods in Microbiology 38 Academic Press; 2011 pp 101–129
    [Google Scholar]
  44. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article]
    [Google Scholar]
  45. MacKenzie SL. Gas chromatographic analysis of amino acids as the jV-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160 [View Article]
    [Google Scholar]
  46. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article]
    [Google Scholar]
  47. Tamura T, Yokota A. Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Evol Microbiol 1994; 44:608–611 [View Article]
    [Google Scholar]
  48. Ramasamy D, Kokcha S, Lagier J-C, Nguyen T-T, Raoult D et al. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand Genomic Sci 2012; 7:246–257 [View Article]
    [Google Scholar]
  49. Lee L-H, Zainal N, Azman A-S, Mutalib N-SA, Hong K et al. Mumia flava gen. nov., sp. nov., an actinobacterium of the family Nocardioidaceae. Int J Syst Evol Microbiol 2014; 64:1461–1467 [View Article]
    [Google Scholar]
  50. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 1976; 26:58–65 [View Article]
    [Google Scholar]
  51. Collins MD, Keddie RM, Kroppenstedt RM. Lipid composition of Arthrobacter simplex, Arthrobacter tumescens and possibly related taxa. Syst Appl Microbiol 1983; 4:18–26 [View Article]
    [Google Scholar]
  52. Yi H, Chun J. Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:1295–1299 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005678
Loading
/content/journal/ijsem/10.1099/ijsem.0.005678
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error