1887

Abstract

Two Gram-stain-negative, oxidase-positive, facultative anaerobic and rod-shaped motile bacteria, designated strains ZSDZ34 and ZSDE26, were isolated from offshore surface seawater collected near Qingdao. Phylogenetic analysis based on 16S rRNA gene sequences placed ZSDE26 and ZSDZ34 within the genus , family , class . Strain ZSDE26 was most closely related to VB 8.9 with 97.3 % sequence similarity, whereas ZSDZ34 was most closely related to subsp. DSM 109723 with 97.8 % sequence similarity. Strain ZSDE26 grew with 1–5 % (w/v) NaCl (optimum, 4 %), at 16–28 °C (optimum, 28 °C) and at pH 6.0–9.0 (optimum, pH 7.0). Growth of strain ZSDZ34 occurred with 1–6 % (w/v) NaCl (optimum, 3 %), at 16–37 °C (optimum, 28 °C) and at pH 6.0–9.0 (optimum, pH 7.0). Both strains shared the same major fatty acid components (more than 10 % of total fatty acids) of summed feature 3 (C 7 and/or C 6), summed feature 8 (C 7 and/or C 6) and C. Additionally, strain ZSDZ34 contained a higher proportion of iso-C. The DNA G+C contents of strains ZSDE26 and ZSDZ34 were 42.8 and 44.5 mol%, respectively. On the basis of the results of polyphasic analysis, ZSDE26 and ZSDZ34 are considered to represent novel species within the genus , for which the names sp. nov. (type strain, ZSDE26=KCTC 82890=MCCC 1K06290) and sp. nov. (type strain, ZSDZ34=KCTC 82888=MCCC 1K06292) are proposed, respectively.

Funding
This study was supported by the:
  • National Key Research and Development Program of China (Award SQ2018YFE010520)
    • Principle Award Recipient: Xiao-HuaZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005674
2023-01-18
2024-05-13
Loading full text...

Full text loading...

References

  1. Baumann P, Schubert RHW. Vibrionaceae Veron 1965, 5245AL. In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 1 Baltimore: Williams & Wilkins; 1984 pp 516–517
    [Google Scholar]
  2. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 2007; 57:2823–2829 [View Article]
    [Google Scholar]
  3. Thompson FL, Hoste B, Thompson CC, Goris J, Gomez-Gil B et al. Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. Int J Syst Evol Microbiol 2002; 52:2015–2022 [View Article]
    [Google Scholar]
  4. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 2003; 53:1615–1617 [View Article]
    [Google Scholar]
  5. Huang Z, Dong C, Shao Z. Paraphotobacterium marinum gen. nov., sp. nov., a member of the family Vibrionaceae, isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3050–3056 [View Article] [PubMed]
    [Google Scholar]
  6. Baumann P. Genus Photobacterium Beijerinck 1889, 401AL. In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 1 Baltimore: Williams & Wilkins; 1984 pp 539–545
    [Google Scholar]
  7. Mellado E, Moore ER, Nieto JJ, Ventosa A. Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 1996; 46:817–821 [View Article]
    [Google Scholar]
  8. Amin AKMR, Tanaka M, Al-Saari N, Feng G, Mino S et al. Thaumasiovibrio occultus gen. nov. sp. nov. and Thaumasiovibrio subtropicus sp. nov. within the family Vibrionaceae, isolated from coral reef seawater off Ishigaki Island, Japan. Syst Appl Microbiol 2017; 40:290–296 [View Article]
    [Google Scholar]
  9. Sorokin DY. Catenococcus thiocyclus gen. nov. sp. nov. - a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J Gen Microbiol 1992; 138:2287–2292 [View Article]
    [Google Scholar]
  10. Nedashkovskaya OI, Stenkova AM, Zhukova NV, Van Trappen S, Lee JS et al. Echinimonas agarilytica gen. nov., sp. nov., a new gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius. Antonie van Leeuwenhoek 2013; 103:69–77 [View Article]
    [Google Scholar]
  11. MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 1985; 6:171–182 [View Article]
    [Google Scholar]
  12. Gomez-Gil B, González-Castillo A, Aguilar-Méndez MJ, López-Cortés A, Gómez-Gutiérrez J et al. Veronia nyctiphanis gen. nov., sp. nov., isolated from the stomach of the Euphausiid nyctiphanes simplex (Hansen, 1911) in the Gulf of California, and reclassification of Enterovibrio pacificus as Veronia pacifica comb. nov. Curr Microbiol 2021; 78:3782–3790 [View Article]
    [Google Scholar]
  13. Farmer JJ, Michael JJ. Genus I. Vibrio Pacini 1854, 411AL. In Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd Ed, Vol. 2, The Proteobacteria, Part B New York: Springer Press; 2005 pp 494–546
    [Google Scholar]
  14. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019; 7:47 [View Article] [PubMed]
    [Google Scholar]
  15. Zhang X, Lin H, Wang X, Austin B. Significance of Vibrio species in the marine organic carbon cycle—a review. Sci China Earth Sci 2018; 61:1357–1368 [View Article]
    [Google Scholar]
  16. Beaz-Hidalgo R, Doce A, Pascual J, Toranzo AE, Romalde JL. Vibrio gallaecicus sp. nov. isolated from cultured clams in north-western Spain. Syst Appl Microbiol 2009; 32:111–117 [View Article] [PubMed]
    [Google Scholar]
  17. Wang H, Liu J, Wang Y, Zhang XH. Vibrio marisflavi sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:568–573 [View Article] [PubMed]
    [Google Scholar]
  18. Kumari P, Poddar A, Schumann P, Das SK. Vibrio panuliri sp. nov., a marine bacterium isolated from spiny lobster, Panulirus penicillatus and transfer of Vibrio ponticus from Scophthalmi clade to the newly proposed Ponticus clade. Res Microbiol 2014; 165:826–835 [View Article] [PubMed]
    [Google Scholar]
  19. Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J et al. Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 2003; 53:753–759 [View Article] [PubMed]
    [Google Scholar]
  20. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak TA, Marzluf G. eds Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 19–33
    [Google Scholar]
  21. Lyman J, Fleming RH. Composition of sea water. J Mar Res 1940; 3:134–146 [View Article]
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. eds Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  23. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article]
    [Google Scholar]
  25. Zhang Z, Yu T, Xu T, Zhang X-H. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  33. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual vol 1 1999 pp 1–15
    [Google Scholar]
  34. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  35. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  36. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  37. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  38. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  39. Liu X, Deng Y, Ni Y, Li ZH. FastTree: a hardware KD-tree construction acceleration engine for real-time ray tracing. Design, Automation and Test in Europe Grenoble, France 2015 [View Article]
    [Google Scholar]
  40. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  41. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  42. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  43. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  44. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  45. Wayne LG, Brenner DJ, Colwell RR. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  46. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990; 20:1–6
    [Google Scholar]
  47. Garcia C, Mesnil A, Tourbiez D, Moussa M, Dubreuil C et al. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int J Syst Evol Microbiol 2021; 71:4654–4663 [View Article]
    [Google Scholar]
  48. Lasa A, Diéguez AL, Romalde JL. Vibrio cortegadensis sp. nov., isolated from clams. Antonie van Leeuwenhoek 2014; 105:335–341 [View Article]
    [Google Scholar]
  49. Lucena T, Ruvira MA, Arahal DR, Macián MC, Pujalte MJ. Vibrio aestivus sp. nov. and Vibrio quintilis sp. nov., related to Marisflavi and Gazogenes clades, respectively. Syst Appl Microbiol 2012; 35:427–431 [View Article] [PubMed]
    [Google Scholar]
  50. González-Castillo A, Enciso-Ibarrra J, Bolán-Mejia MC, Balboa S, Lasa A et al. Vibrio mexicanus sp. nov., isolated from a cultured oyster Crassostrea corteziensis. Antonie van Leeuwenhoek 2015; 108:355–364 [View Article]
    [Google Scholar]
  51. Yoshizawa S, Wada M, Yokota A, Kogure K. Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from sea water. J Gen Appl Microbiol 2010; 56:499–507 [View Article] [PubMed]
    [Google Scholar]
  52. Chimetto LA, Cleenwerck I, Moreira APB, Brocchi M, Willems A et al. Vibrio variabilis sp. nov. and Vibrio maritimus sp. nov., isolated from Palythoa caribaeorum. Int J Syst Evol Microbiol 2011; 61:3009–3015 [View Article] [PubMed]
    [Google Scholar]
  53. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E. Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 2001; 51:1383–1388 [View Article] [PubMed]
    [Google Scholar]
  54. Colwell RR. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 1970; 104:410–433 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005674
Loading
/content/journal/ijsem/10.1099/ijsem.0.005674
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error