1887

Abstract

An anaerobic bacterial strain, designated strain M3/9, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5–8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9 produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C and C DMA. The genome of strain M3/9 is 3757  330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9 within the family with DSM 6011 and DSM 14214 being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus gen. nov., sp. nov., represented by the type strain M3/9 (=DSM 100058=LMG 29527). In addition, an emended description of is provided.

Funding
This study was supported by the:
  • Bundesanstalt für Landwirtschaft und Ernährung (Award 22017111)
    • Principle Award Recipient: MichaelKlocke
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005668
2022-12-20
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/12/ijsem005668.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005668&mimeType=html&fmt=ahah

References

  1. Lewandowski I, Bahrs E, Dahmen N, Hirth T, Rausch T et al. Biobased value chains for a growing bioeconomy. GCB Bioenergy 2019; 11:4–8 [View Article]
    [Google Scholar]
  2. Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 2008; 136:77–90 [View Article]
    [Google Scholar]
  3. Schnürer A. Biogas production: microbiology and technology. Adv Biochem Eng Biotechnol 2016; 156:195–234 [View Article]
    [Google Scholar]
  4. Hassa J, Maus I, Off S, Pühler A, Scherer P et al. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018; 102:5045–5063 [View Article] [PubMed]
    [Google Scholar]
  5. Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I. A novel archaeal species belonging to Methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 2017; 46:23–32 [View Article] [PubMed]
    [Google Scholar]
  6. Rademacher A, Nolte C, Schönberg M, Klocke M. Temperature increases from 55 to 75 °C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Appl Microbiol Biotechnol 2012; 96:565–576 [View Article]
    [Google Scholar]
  7. Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 2016; 9:171 [View Article]
    [Google Scholar]
  8. Stolze Y, Bremges A, Rumming M, Henke C, Maus I et al. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. Biotechnol Biofuels 2016; 9:156 [View Article]
    [Google Scholar]
  9. Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 2015; 8:749–763 [View Article] [PubMed]
    [Google Scholar]
  10. Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G et al. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 2016; 9:26 [View Article]
    [Google Scholar]
  11. Maus I, Klocke M, Derenkó J, Stolze Y, Beckstette M et al. Impact of process temperature and organic loading rate on cellulolytic / hydrolytic biofilm microbiomes during biomethanation of ryegrass silage revealed by genome-centered metagenomics and metatranscriptomics. Environ Microbiome 2020; 15:7 [View Article]
    [Google Scholar]
  12. Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A et al. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 2016; 231:268–279 [View Article] [PubMed]
    [Google Scholar]
  13. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article] [PubMed]
    [Google Scholar]
  14. Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C et al. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 2014; 29:10–21 [View Article] [PubMed]
    [Google Scholar]
  15. Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2021 pp 1–9 [View Article]
    [Google Scholar]
  16. Suksong W, Kongjan P, Prasertsan P, O-Thong S. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. Bioresour Technol 2019; 291:121851 [View Article]
    [Google Scholar]
  17. Rettenmaier R, Thieme N, Streubel J, Di Bello L, Kowollik M-L et al. Variimorphobacter saccharofermentans gen. nov., sp. nov., a new member of the family Lachnospiraceae, isolated from a maize-fed biogas fermenter. Int J Syst Evol Microbiol 2021; 71:005044 [View Article]
    [Google Scholar]
  18. Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE et al. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 2020; 28:134–146 [View Article]
    [Google Scholar]
  19. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M et al. The controversial role of human gut Lachnospiraceae. Microorganisms 2020; 8:E573 [View Article]
    [Google Scholar]
  20. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  21. Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W et al. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2015; 65:2365–2371 [View Article]
    [Google Scholar]
  22. Koeck DE, Hahnke S, Zverlov VV. Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2016; 66:4132–4137 [View Article]
    [Google Scholar]
  23. Ueki A, Ohtaki Y, Kaku N, Ueki K. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int J Syst Evol Microbiol 2016; 66:2936–2943 [View Article]
    [Google Scholar]
  24. Patil Y, Junghare M, Pester M, Müller N, Schink B. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. Int J Syst Evol Microbiol 2015; 65:3289–3296 [View Article]
    [Google Scholar]
  25. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  26. Mumme J, Linke B, Tölle R. Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 2010; 101:592–599 [View Article]
    [Google Scholar]
  27. Hahnke S, Langer T, Koeck DE, Klocke M. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. Int J Syst Evol Microbiol 2016; 66:1466–1475 [View Article]
    [Google Scholar]
  28. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  29. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–8 [View Article]
    [Google Scholar]
  30. Nelkner J, Tejerizo GT, Hassa J, Lin TW, Witte J et al. Genetic potential of the biocontrol agent Pseudomonas brassicacearum (Formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics. Genes 2019; 10:E601 [View Article]
    [Google Scholar]
  31. Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J et al. The role of petrimonas mucosa ING2-E5AT in mesophilic biogas reactor systems as deduced from multiomics analyses. Microorganisms 2020; 8:2024 [View Article]
    [Google Scholar]
  32. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  33. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009; 25:2283–2285 [View Article] [PubMed]
    [Google Scholar]
  34. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T et al. GenDB--an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003; 31:2187–2195 [View Article] [PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  36. Schuster JA, Klingl A, Vogel RF, Ehrmann MA. Polyphasic characterization of two novel Lactobacillus spp. isolated from blown salami packages: description of Lactobacillus halodurans sp. nov. and Lactobacillus salsicarnum sp. nov. Syst Appl Microbiol 2019; 42:126023 [View Article]
    [Google Scholar]
  37. Rettenmaier R, Liebl W, Zverlov VV. Anaerosphaera multitolerans sp. nov., a salt-tolerant member of the family Peptoniphilaceae isolated from a mesophilically operated biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 2020; 70:1217–1223 [View Article] [PubMed]
    [Google Scholar]
  38. Choi S-H, Kim J-S, Park J-E, Lee KC, Eom MK et al. Anaerotignum faecicola sp. nov., isolated from human faeces. J Microbiol 2019; 57:1073–1078 [View Article] [PubMed]
    [Google Scholar]
  39. Ueki A, Goto K, Ohtaki Y, Kaku N, Ueki K. Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. Int J Syst Evol Microbiol 2017; 67:4146–4153 [View Article]
    [Google Scholar]
  40. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  41. Rodriguez-R L, Konstantinidis K. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  42. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  43. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  44. Tyzzer EE. A fatal disease of the japanese waltzing mouse caused by a spore-bearing bacillus (Bacillus piliformis, N. SP.). J Med Res 1917; 37:307–338
    [Google Scholar]
  45. Duncan AJ, Carman RJ, Olsen GJ, Wilson KH. Assignment of the agent of Tyzzer’s disease to Clostridium piliforme comb. nov. on the basis of 16S rRNA sequence analysis. Int J Syst Bacteriol 1993; 43:314–318 [View Article] [PubMed]
    [Google Scholar]
  46. Berkhoff HAY. Clostridium colinum sp. nov., nom. rev., the causative agent of ulcerative enteritis (Quail Disease) in quail, chickens, and pheasants. Int J Bacteriol 1985; 35:155–159 [View Article]
    [Google Scholar]
  47. van der Wielen PWJJ, Rovers GMLL, Scheepens JMA, Biesterveld S. Clostridium lactatifermen tans sp. nov., a lactate-fermenting anaerobe isolated from the caeca of a chicken. Int J Syst Evol Microbiol 2002; 52:921–925 [View Article] [PubMed]
    [Google Scholar]
  48. Cardon BP, Barker HA. Two new amino-acid-fermenting bacteria, clostridium propionicum and Diplococcus glycinophilus. J Bacteriol 1946; 52:629–634 [View Article]
    [Google Scholar]
  49. Tholozan JL, Touzel JP, Samain E, Grivet JP, Prensier G et al. Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch Microbiol 1992; 157:249–257 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005668
Loading
/content/journal/ijsem/10.1099/ijsem.0.005668
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error