1887

Abstract

A polyphasic approach was used to describe strain RB6PN25, an actinobacterium isolated from peat swamp forest soil in Rayong Province, Thailand. The strain was a Gram-stain-positive and filamentous bacterium that contained -diaminopimelic acid, mannose and ribose in whole-cell hydrolysates. MK-9(H) was the major menaquinone. The major fatty acids were -C, -C and -C. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, two unidentified glycophospholipids, two unidentified aminolipids and an unidentified phospholipid. The 16S rRNA gene sequences analysis indicated that it was most closely related to DSM 42083 (97.6 %) and TBRC 1999 (97.4 %). Strain RB6PN25 exhibited low average nucleotide identity and digital DNA–DNA hybridization values with DSM 42083 (78.6 %, 23.2 %) and TBRC 1999 (76.0 %, 22.6 %). The DNA G+C content of strain RB6PN25 was 69.9%. The results of phenotypic, chemotaxonomic, genotypic and phylogenetic analyses reveal that strain RB6PN25 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RB6PN25 (=TBRC 14819=NBRC 115204).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005665
2022-12-20
2024-05-09
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article]
    [Google Scholar]
  2. Somphong A, Poengsungnoen V, Buaruang K, Suriyachadkun C, Sripreechasak P et al. Diversity of the culturable lichen-derived actinobacteria and the taxonomy of Streptomyces parmotrematis sp. nov. Antonie van Leeuwenhoek 2022; 115:911–920 [View Article]
    [Google Scholar]
  3. Olanrewaju OS, Babalola OO. Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 2019; 103:1179–1188 [View Article]
    [Google Scholar]
  4. Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69:1040–1048 [View Article]
    [Google Scholar]
  5. Naughton LM, Romano S, O’Gara F, Dobson ADW. Identification of secondary metabolite gene clusters in the Pseudovibrio genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds. Front Microbiol 2017; 8:1494 [View Article]
    [Google Scholar]
  6. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  7. Himaman W, Suksaard P, Mingma R, Matsumoto A, Duangmal K. Cryptosporangium eucalypti sp. nov., an actinomycete isolated from Eucalyptus camaldulensis roots. Int J Syst Evol Microbiol 2017; 67:3077–3082 [View Article] [PubMed]
    [Google Scholar]
  8. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics Norwich: John Innes Foundation; 2000
    [Google Scholar]
  9. Himaman W, Thamchaipenet A, Pathom-aree W, Duangmal K. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight. Microbiol Res 2016; 188–189:42–52 [View Article]
    [Google Scholar]
  10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  11. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  12. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  13. Tarlachkov SV, Starodumova IP. TaxonDC: calculating the similarity value of the 16S rRNA gene sequences of prokaryotes or ITS regions of fungi. J Bioinf Genom 2017; 3:1–4
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  20. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  21. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  22. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  24. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  26. Wolf H, Chinali G, Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A 1974; 71:4910–4914 [View Article]
    [Google Scholar]
  27. Wolf H, Zähner H. Metabolic products of microorganisms. 99. Kirromycin. Arch Microbiol 1972; 83:147–154 [View Article]
    [Google Scholar]
  28. Ogasawara Y, Yackley BJ, Greenberg JA, Rogelj S, Melançon CE. Expanding our understanding of sequence-function relationships of type II polyketide biosynthetic gene clusters: bioinformatics-guided identification of Frankiamicin A from Frankia sp. EAN1pec. PLoS One 2015; 10:e0121505 [View Article]
    [Google Scholar]
  29. Huang S, Tong MH, Qin Z, Deng Z, Deng H et al. Identification and characterization of the biosynthetic gene cluster of thiolutin, a tumor angiogenesis inhibitor, in Saccharothrix algeriensis NRRL B-24137. Anticancer Agents Med Chem 2015; 15:277–284 [View Article]
    [Google Scholar]
  30. Kebaara BW, Nielsen LE, Nickerson KW, Atkin AL. Determination of mRNA half-lives in Candida albicans using thiolutin as a transcription inhibitor. Genome 2006; 49:894–899 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang W, Wang L, Kong L, Wang T, Chu Y et al. Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. Chem Biol 2012; 19:422–432 [View Article] [PubMed]
    [Google Scholar]
  32. Huang T, Wang Y, Yin J, Du Y, Tao M et al. Identification and characterization of the pyridomycin biosynthetic gene cluster of Streptomyces pyridomyceticus NRRL B-2517. J Biol Chem 2011; 286:20648–20657 [View Article] [PubMed]
    [Google Scholar]
  33. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  34. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965; 13:236–243 [View Article]
    [Google Scholar]
  35. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  36. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  37. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI; 1990
    [Google Scholar]
  38. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  39. Mundie D. The NBS/ISCC Color System/David A Mundie Pittsburgh, PA: Polymath Systems;535.6 dc–20;1995.
    [Google Scholar]
  40. Smith AC, Hussey MA. Gram stain protocols. ASM 2005; 1:14
    [Google Scholar]
  41. Williams S, Davies F, Mayfield C, Khan M. Studies on the ecology of actinomycetes in soil II. The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem 1971; 3:187–195 [View Article]
    [Google Scholar]
  42. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  43. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article]
    [Google Scholar]
  44. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957; 73:15–27 [View Article] [PubMed]
    [Google Scholar]
  45. Küster E, Williams ST. Production of hydrogen sulfide by streptomycetes and methods for its detection. Appl Microbiol 1964; 12:46–52 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005665
Loading
/content/journal/ijsem/10.1099/ijsem.0.005665
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error