1887

Abstract

A dark-coloured thin film of cyanobacteria growing on the bottom of a submerged stone was isolated from Basantgarh village in Udhampur district, Jammu and Kashmir, India. The isolated strain (designated 19C-PS) was characterized using a polyphasic approach. The strain exhibited typical -like morphology with a characteristic feature of having heterocytes in series. The 16S rRNA gene phylogeny placed the strain at a well-supported and distinct node. Notably, the recently described genus, , on the addition of more 16S rRNA gene sequences, reflected a critical split, which proved to be stable and well supported in all phylogenetic analyses of the 16S rRNA gene. Interestingly, CENA67 (type species of the genus) clustered together with our strain 19C-PS in the 16S rRNA gene phylogenetic analysis while the rest of the members of the genus were placed at a separate and distant node. This clearly indicated that strain 19C-PS is a member of . However, the results of phylogenetic analysis of ITS sequences only, in strains purported to belong to did not agree with the 16S rRNA gene results and placed our strain 19C-PS in a sister clade to three strains that have not yet been speciated, UHCC 0702, NIES-4103 and SA22, with falling into a separate clade. Further, folded secondary structures of the D1–D1′, V2, BoxB and V3 helices of strain 19C-PS were found to be significantly different from those of all the phylogenetically related taxa. The study revealed an interesting case where low taxon sampling and phylogenomic interpretations came across as points of attention in cyanobacterial taxonomy. Based on the morphological, phylogenetic, 16S–23S ITS secondary structure analyses, we describe our strain as sp. nov. in accordance with the International Code of Nomenclature for algae, fungi and plants. This work also illuminates the need for further research to resolve the taxonomic discrepancies among strains.

Funding
This study was supported by the:
  • Banaras Hindu University (Award Seed Grant)
    • Principle Award Recipient: PrashantSingh
  • DST-SERB (Award CRG/2018/004111)
    • Principle Award Recipient: PrashantSingh
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005658
2022-12-20
2024-05-20
Loading full text...

Full text loading...

References

  1. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014; 86:295–335
    [Google Scholar]
  2. Chavadar M, Saraf A, Suradkar A, Mishra D, Kumar N et al. Constrictifilum karadense gen. et sp. nov., a new Nostocalean genus from Maharashtra, India. FEMS Microbiol Lett 2021; 368:368 [View Article]
    [Google Scholar]
  3. Bornet E, Flahault C. Revision des nostocacées hétérocystées contenues dans les principaux herbiers de france (quatriéme et dernier fragment). Ann des Sci Nat Bot Septième série 1886-1888; 7:177–262
    [Google Scholar]
  4. Komárek J. Cyanoprokaryota 3. Heterocytous genera. In Büdel B, Gärtner G, Krienitz L, Schagerl M. eds Süswasserflora von Mitteleuropa/Freshwater Flora of Central Europe Berlin, Heidelberg: Springer Spektrum; 2013
    [Google Scholar]
  5. Bagchi SN, Dubey N, Singh P. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int J Syst Evol Microbiol 2017; 67:3329–3338 [View Article]
    [Google Scholar]
  6. Singh P, Šnokhousová J, Saraf A, Suradkar A, Elster J. Phylogenetic evaluation of the genus Nostoc and description of Nostoc neudorfense sp. nov., from the Czech Republic. Int J Syst Evol Microbiol 2020; 70:2740–2749 [View Article] [PubMed]
    [Google Scholar]
  7. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 2007; 46:481–502 [View Article]
    [Google Scholar]
  8. Hrouzek P, Lukešová A, Mareš J, Ventura S. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 2013; 13:201–213 [View Article]
    [Google Scholar]
  9. Genuário DB, Vaz MGMV, Hentschke GS, Sant’Anna CL, Fiore MF. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 2015; 65:663–675 [View Article] [PubMed]
    [Google Scholar]
  10. Hentschke GS, Johansen JR, Pietrasiak N, Rigonato J, Fiore MF et al. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 2017; 17:178–190 [View Article]
    [Google Scholar]
  11. Cai F, Li X, Yang Y, Jia N, Huo D et al. Compactonostoc shennongjiaensis gen. & sp. nov. (Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia 2019; 58:200–210 [View Article]
    [Google Scholar]
  12. Saraf AG, Dawda HG, Singh P. Desikacharya gen. nov., a phylogenetically distinct genus of Cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int J Syst Evol Microbiol 2019; 69:307–315 [View Article]
    [Google Scholar]
  13. Cai F, Peng X, Li R. Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China. ALGAE 2020; 35:1–16 [View Article]
    [Google Scholar]
  14. Cai F, Wang Y, Yu G, Wang J, Peng X et al. Proposal of Purpureonostoc gen. nov. (Nostocales, Cyanobacteria), a novel cyanobacterial genus from wet soil samples in Tibet, China. Fottea 2020; 20:86–97 [View Article]
    [Google Scholar]
  15. Soares F, Ramos V, Trovão J, Cardoso SM, Tiago I et al. Parakomarekiella sesnandensis gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). Eur J Phycol 2021; 56:301–315 [View Article]
    [Google Scholar]
  16. Lee NJ, Bang SD, Kim T, Ki JS, Lee OM. Pseudoaliinostoc sejongens gen. & sp. nov. (Nostocales, Cyanobacteria) from floodplain soil of the Geum river in Korea based on polyphasic approach. Phytotaxa 2021; 479:55–70 [View Article]
    [Google Scholar]
  17. Alvarenga DO, Andreote APD, Branco LHZ, Delbaje E, Cruz RB et al. Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen. nov., sp. nov., nostocacean cyanobacteria from Brazilian environments. Int J Syst Evol Microbiol 2021; 71:004811 [View Article]
    [Google Scholar]
  18. Stanier RY, Deruelles J, Rippka R, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979; 111:1–61 [View Article]
    [Google Scholar]
  19. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article]
    [Google Scholar]
  20. Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T et al. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microb Ecol 2005; 49:176–182 [View Article]
    [Google Scholar]
  21. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 2000; 146:1275–1286 [View Article]
    [Google Scholar]
  22. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article]
    [Google Scholar]
  23. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article]
    [Google Scholar]
  24. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–5 [View Article]
    [Google Scholar]
  25. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article]
    [Google Scholar]
  26. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article]
    [Google Scholar]
  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  29. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406–3415 [View Article] [PubMed]
    [Google Scholar]
  30. Desikachary TV. Cyanophyta. In ICAR Monographs on Algae New Delhi: Indian Council of Agricultural Research; 1959
    [Google Scholar]
  31. Dixit SC. The Myxophyceae of the Bombay Presidency, India.– I. In Proceedings/Indian Academy of Sciences. Springer India 193693–106 [View Article]
    [Google Scholar]
  32. Barbosa M, Berthold DE, Lefler FW, Dail Laughinghouse IV H. Diversity of the genus Brasilonema (Nostocales, Cyanobacteria) in plant nurseries of central Florida (USA) with the description of three new species: B. fioreae sp. nov., B. santannae sp. nov. and B. wernerae sp. nov. Fottea 2021; 21:82–99 [View Article]
    [Google Scholar]
  33. Tawong W, Pongcharoen P, Pongpadung P, Ponza S, Saijuntha W. Amazonocrinis thailandica sp. nov. (Nostocales, Cyanobacteria), a novel species of the previously monotypic Amazonocrinis genus from Thailand. Algae 2022; 37:1–14 [View Article]
    [Google Scholar]
  34. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  35. Flechtner VR, Boyer SL, Johansen JR, Denoble ML. Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwigia 2002; 74:1–24 [View Article]
    [Google Scholar]
  36. Kaštovský J, Gomez EB, Hladil J, Johansen JR. Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 2014; 181:279 [View Article]
    [Google Scholar]
  37. Bohunická M, Pietrasiak N, Johansen JR, Gómez EB, Hauer T et al. Roholtiella, gen. nov. (Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 2015; 197:84 [View Article]
    [Google Scholar]
  38. Hentschke GS, Johansen JR, Pietrasiak N, Fiore MDF, Rigonato J et al. Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 2016; 245:129 [View Article]
    [Google Scholar]
  39. Cai F, Li X, Geng R, Peng X, Li R. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and Minunostoc cylindricum sp. nov. Fottea 2019; 19:13–24 [View Article]
    [Google Scholar]
  40. González-Resendiz L, Johansen JR, Alba-Lois L, Segal-Kischinevzky C, Escobar-Sánchez V et al. Nunduva, a new marine genus of Rivulariaceae (Nostocales, Cyanobacteria) from marine rocky shores. Fottea 2018; 18:86–105 [View Article]
    [Google Scholar]
  41. Erwin PM, Thacker RW. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 2008; 17:2937–2947 [View Article]
    [Google Scholar]
  42. Perkerson Iii RB, Johansen JR, Kovácik L, Brand J, Kaštovský J et al. A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data(1). J Phycol 2011; 47:1397–1412 [View Article]
    [Google Scholar]
  43. Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe LH, Kováčik L et al. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur J Phycol 2014; 49:450–470 [View Article]
    [Google Scholar]
  44. Mishra D, Saraf A, Kumar N, Pal S, Singh P. Issues in cyanobacterial taxonomy: comprehensive case study of unbranched, false branched and true branched heterocytous cyanobacteria. FEMS Microbiol Lett 2021; 368:fnab005 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005658
Loading
/content/journal/ijsem/10.1099/ijsem.0.005658
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error