1887

Abstract

A nitrogen-fixing actinobacterium strain (Cc1.17) isolated from a root nodule of was subjected to polyphasic taxonomic studies. The strain was characterized by the presence of -diaminopimelic acid in its peptidoglycan, galactose, glucose, mannose, rhamnose, ribose and xylose as cell-wall sugars, phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, glycophospholipid and uncharacterized lipids as its polar lipids, and C, isoC, C ω9 and C 9 as major fatty acids (>10 %). Strain Cc1.17 showed 16S rRNA gene sequence similarities of 97.4–99.8 % to validly named species. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain Cc1.17 in a new lineage within the genus . Digital DNA–DNA hybridization and average nucleotide identity values between strain Cc1.17 and its closest phylogenomic neighbours were well below the thresholds recommended for prokaryotic species delineation. Therefore, strain Cc1.17 (=DSM 43829=CECT 9313) merits recognition as the type strain of a new species for which the name sp. nov. is proposed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005656
2023-01-27
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/1/ijsem005656.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005656&mimeType=html&fmt=ahah

References

  1. Brunchorst J. Über einige wurzelanschwellungen, besonders diejenigen von Alnus und den elaegnaceen. Botanische Institut Tubingen 1886; 2:151–177
    [Google Scholar]
  2. Gtari M, Nouioui I, Sarkar I, Ghodhbane-Gtari F, Tisa LS et al. An update on the taxonomy of the genus Frankia Brunchorst, 1886, 174AL. Antonie Van Leeuwenhoek 2019; 112:5–21 [View Article] [PubMed]
    [Google Scholar]
  3. Gtari M, Ghodhbane-Gtari F, Nouioui I, Ktari A, Hezbri K et al. Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Sci Rep 2015; 5:13112 [View Article]
    [Google Scholar]
  4. Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MDC, Göker M, Meier-Kolthoff JP et al. Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Int J Syst Evol Microbiol 2016; 66:5201–5210 [View Article]
    [Google Scholar]
  5. Normand P, Nouioui I, Pujic P, Fournier P, Dubost A et al. Frankia canadensis sp. nov., isolated from root nodules of Alnus incana subspecies rugosa. Int J Syst Evol Microbiol 2018; 68:3001–3011 [View Article]
    [Google Scholar]
  6. Nouioui I, Ghodhbane-Gtari F, Jando M, Tisa LS, Klenk H-P et al. Frankia torreyi sp. nov., the first actinobacterium of the genus Frankia Brunchorst 1886, 174AL isolated in axenic culture. Antonie Van Leeuwenhoek 2019; 112:57–65 [View Article] [PubMed]
    [Google Scholar]
  7. Nouioui I, Ghodhbane-Gtari F, Rohde M, Klenk HP, Gtari M. Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. Int J Syst Evol Microbiol 2017; 67:1266–1270 [View Article] [PubMed]
    [Google Scholar]
  8. Nouioui I, Del Carmen Montero-Calasanz M, Ghodhbane-Gtari F, Rohde M, Tisa LS et al. Frankia discariae sp. nov.: an infective and effective microsymbiont isolated from the root nodule of Discaria trinervis. Arch Microbiol 2017; 199:641–647 [View Article] [PubMed]
    [Google Scholar]
  9. Nouioui I, Ghodhbane-Gtari F, Rhode M, Sangal V, Klenk HP et al. Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulates members of the actinorhizal Rhamnales. Int J Syst Evol Microbiol 2018; 68:2883–2914 [View Article] [PubMed]
    [Google Scholar]
  10. Gtari M, Ghodhbane-Gtari F, Nouioui I. Frankia soli sp. nov., an actinobacterium isolated from soil beneath Ceanothus jepsonii. Int J Syst Evol Microbiol 2020; 70:1203–1209 [View Article] [PubMed]
    [Google Scholar]
  11. Nouioui I, Gueddou A, Ghodhbane-Gtari F, Rhode M, Gtari M et al. Frankia asymbiotica sp. nov., a non-infective actinobacterium isolated from Morella californica root nodule. Int J Syst Evol Microbiol 2017; 67:4897–4901 [View Article] [PubMed]
    [Google Scholar]
  12. Nouioui I, Ghodhbane-Gtari F, Del Carmen Montero-Calasanz M, Rohde M, Tisa LS et al. Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie Van Leeuwenhoek 2017; 110:313–320 [View Article] [PubMed]
    [Google Scholar]
  13. Nouioui I, Ghodhbane-Gtari F, Klenk HP, Gtari M. Frankia saprophytica sp. nov., an atypical, non-infective (Nod-) and non-nitrogen fixing (Fix-) actinobacterium isolated from Coriaria nepalensis root nodules. Int J Syst Evol Microbiol 2018; 68:1090–1095 [View Article] [PubMed]
    [Google Scholar]
  14. Akkermans ADL, Hafeez F, Roelofsen W, Chaudhary AH, Baas R. Ultrastructure and nitrogenase activity of Frankia grown in pure culture and in actinorrhizae of Alnus, Colletia and Datisca spp. In Veeger C, Newton WE. eds Advances in Nitrogen Fixation Research vol 4 Wageningen: Nijhoff/Junk Publishers; 1984
    [Google Scholar]
  15. Murry MA, Fontaine MS, Torrey JG. Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. Plant Soil 1984; 78:61–78 [View Article]
    [Google Scholar]
  16. Meesters TM, van Genesen STh, Akkermans ADL. Growth, acetylene reduction activity and localization of nitrogenase in relation to vesicle formation in Frankia strains Cc1.17 and Cp1.2. Arch Microbiol 1985; 143:137–142 [View Article]
    [Google Scholar]
  17. Meesters TM. Localization of nitrogenase in vesicles of Frankia sp. Cc1.17 by immunogoldlabelling on ultrathin cryosections. Arch Microbiol 1987; 146:327–331 [View Article]
    [Google Scholar]
  18. Baker DD. Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 1987; 70:245–248 [View Article]
    [Google Scholar]
  19. Tisa LS, Chval MS, Krumholz GD, Richards J. Antibiotic resistance patterns of Frankia strains. Can J Bot 1999; 77:1257–1260
    [Google Scholar]
  20. Richards JW, Krumholz GD, Chval MS, Tisa LS. Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 2002; 68:923–927 [View Article] [PubMed]
    [Google Scholar]
  21. Ngom M, Oshone R, Diagne N, Cissoko M, Svistoonoff S et al. Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation. Symbiosis 2016; 70:17–29 [View Article]
    [Google Scholar]
  22. Lechevalier MP, Lechevalier HA. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  23. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  24. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  25. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  26. Kroppenstedt RM, Goodfellow M et al. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. Archaea, Bacteria, Firmicutes, Actinomycetes. In Dworkin M. eds The Prokaryotes: A Handbookon the Biology of Bacteria New York, USA: Springer; 2006 pp 682–724
    [Google Scholar]
  27. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  28. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty Acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J system Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  29. Sasser M. Technical note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI; 1990
    [Google Scholar]
  30. Normand P, Benson DR et al. Order XVI Frankiales. In Goodfellow M. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 5 New York: Springer; 2012 pp 508–510
    [Google Scholar]
  31. Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M. 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 2010; 60:487–495 [View Article] [PubMed]
    [Google Scholar]
  32. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons; 1991 pp 115–175
    [Google Scholar]
  33. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975; 94:441–448 [View Article] [PubMed]
    [Google Scholar]
  34. Swanson E, Oshone R, Nouioui I, Abebe-Akele F, Simpson S et al. Permanent draft genome sequence for Frankia sp. strain Cc1.17, a nitrogen-fixing actinobacterium isolated from root nodules of Colletia cruciata. Genome Announc 2017; 5:e00530-17 [View Article]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  37. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  38. Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article] [PubMed]
    [Google Scholar]
  39. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article]
    [Google Scholar]
  40. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Phil Trans Soc B 2006; 361:1929–1940 [View Article]
    [Google Scholar]
  41. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  42. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  43. Xiao YS, Zhang B, Zhang M, Guo ZK, Deng XZ et al. Rifamorpholines A-E, potential antibiotics from locust-associated actinobacteria Amycolatopsis sp. Hca4. Org Biomol Chem 2017; 15:3909–3916 [View Article]
    [Google Scholar]
  44. Ikemoto T, Katayama T, Shiraishi A, Haneishi T. Aculeximycin, a new antibiotic from Streptosporangium albidum. II. Isolation, physicochemical and biological properties. J Antibiot 1983; 36:1097–1100 [View Article]
    [Google Scholar]
  45. Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C et al. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 2011; 74:670–674 [View Article] [PubMed]
    [Google Scholar]
  46. Cai P, Kong F, Ruppen ME, Glasier G, Carter GT. Hygrocins A and B, naphthoquinone macrolides from Streptomyces hygroscopicus. J Nat Prod 2005; 68:1736–1742 [View Article] [PubMed]
    [Google Scholar]
  47. Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in Streptomycetes. I. Purification and characterization. J Antibiot 2001; 54:1036–1044 [View Article]
    [Google Scholar]
  48. Tanida S, Hasegawa T, Higashide E. Macbecins I and II, new antitumor antibiotics. I. Producing organism, fermentation and antimicrobial activities. J Antibiot 1980; 33:199–204 [View Article]
    [Google Scholar]
  49. Seyedsayamdost MR, Traxler MF, Zheng SL, Kolter R, Clardy J. Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc 2011; 133:11434–11437 [View Article]
    [Google Scholar]
  50. Gu Q, Yang Y, Yuan Q, Shi G, Wu L et al. Bacillomycin D produced by Bacillus amyloliquefaciens is Involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 2017; 83:e01075-17 [View Article]
    [Google Scholar]
  51. Kang Q, Shen Y, Bai L. Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep 2012; 29:243–263 [View Article] [PubMed]
    [Google Scholar]
  52. Cai P, Kong F, Fink P, Ruppen ME, Williamson RT et al. Polyene antibiotics from Streptomyces mediocidicus. J Nat Prod 2007; 70:215–219 [View Article] [PubMed]
    [Google Scholar]
  53. Li S, Wu L, Chen F, Wang H, Sun G et al. Rapid identification of elaiophylin from Streptomyces hygroscopicus 17997, a geldanamycin producer. Chin J Biotechnol 2011; 27:1109–1114
    [Google Scholar]
  54. Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N et al. Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot 1992; 45:914–921 [View Article]
    [Google Scholar]
  55. Davies DH, Snape EW, Suter PJ, King TJ, Falshaw CP. Structure of antibiotic M139603; X-ray crystal structure of the 4-bromo-3,5-dinitrobenzoyl derivative. JCS Chem Commun 19811073 [View Article]
    [Google Scholar]
  56. Dennis SM, Nagaraja TG, Bartley EE. Effects of lasalocid or monensin on lactate-producing or -using rumen bacteria. J Anim Sci 1981; 52:418–426 [View Article] [PubMed]
    [Google Scholar]
  57. Newbold CJ, Wallace RJ, Watt ND, Richardson AJ. Effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms. Appl Environ Microbiol 1988; 54:544–547 [View Article] [PubMed]
    [Google Scholar]
  58. Ye S, Braña AF, González-Sabín J, Morís F, Olano C et al. New insights into the biosynthesis pathway of polyketide alkaloid argimycins P in Streptomyces argillaceus. Front Microbiol 2018; 9:252 [View Article]
    [Google Scholar]
  59. Terashima T, Kuroda Y, Kaneko Y. Studies on a new alkaloid of Streptomyces structure of nigrifactin. Tetrahedron Letters 1969; 10:2535–2537 [View Article]
    [Google Scholar]
  60. Miyoshi-saitoh M, Morisaki N, Tokiwa Y, Iwasaki S, Konishi M et al. Dynamicins O, P and Q: novel antibiotics related to dynemicin a isolation, characterization and biological activity. J Antibiot 1991; 44:1037–1044 [View Article]
    [Google Scholar]
  61. Kamei H, Nishiyama Y, Takahashi A, Obi Y, Oki T. Dynemicins, new antibiotics with the 1,5-diyn-3-ene and anthraquinone subunit. II. Antitumor activity of dynemicin A and its triacetyl derivative. J Antibiot 1991; 44:1306–1311 [View Article]
    [Google Scholar]
  62. Ogasawara Y, Yackley BJ, Greenberg JA, Rogelj S, Melançon CE. Expanding our understanding of sequence-function relationships of type II polyketide biosynthetic gene clusters: bioinformatics-guided identification of Frankiamicin A from Frankia sp. EAN1pec. PLoS One 2015; 10:e0121505 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005656
Loading
/content/journal/ijsem/10.1099/ijsem.0.005656
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error