1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-endospore-forming bacterium, designated as strain MRCP1333, was isolated from a faecal sample from a hospital patient in Japan. MRCP1333 grew at temperatures of 15–40 °C (optimum 25–35 °C), with 1.0–3.0 % (w/v, 171–513 mM) NaCl [optimum 1–2 % (w/v), 171–342 mM], and at pH 6.0–9.5 (optimum pH 7.0–8.0). The results of phylogenetic analysis based on the sequences of the 16S rRNA gene and the 53 genes encoding the bacterial ribosome protein subunits indicated that MRCP1333 represented a member of the group, most closely related to . Whole-genome comparisons, using average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity, confirmed that MRCP1333 represented a distinct species in the group. Phenotypic characterization tests demonstrated utilization by this strain of citrate, glycerol, and -malic acid, the ability to reduce nitrite to nitrogen and the ability of this strain to grow in the presence of minocycline and tetrazolium blue, distinguishing this strain from and other closely related species of the group. The major fatty acids of MRCP1333 were summed feature 8 (Cω7/Cω6; 38.4 %), summed feature 3 (Cω7/Cω6; 21.1 %) and C (20.6 %). The DNA G+C content of MRCP1333 was 66.5 mol%. Genetic and phenotypic evidence indicated that MRCP1333 should be classified as representing a novel species, for which the name sp. nov. is proposed. The type strain is MRCP1333 (=LMG 32254,=JCM 34250).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005649
2023-01-20
2024-05-13
Loading full text...

Full text loading...

References

  1. Palleroni NJ. Pseudomonas. In Brenner DJ, NR K, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd. edn vol 2 New York: Springer; 2005 pp 323–379
    [Google Scholar]
  2. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article] [PubMed]
    [Google Scholar]
  3. Martino P, Micozzi A, Venditti M, Gentile G, Girmenia C et al. Catheter-related right-sided endocarditis in bone marrow transplant recipients. Rev Infect Dis 1990; 12:250–257 [View Article] [PubMed]
    [Google Scholar]
  4. Tohya M, Uechi K, Tada T, Hishinuma T, Kinjo T et al. Emergence of clinical isolates of Pseudomonas asiatica and Pseudomonas monteilii from Japan harbouring an acquired gene encoding a carbapenemase VIM-2. J Med Microbiol 2021; 70: [View Article] [PubMed]
    [Google Scholar]
  5. Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 2014; 27:927–948 [View Article] [PubMed]
    [Google Scholar]
  6. Shariff M, Beri K. Exacerbation of bronchiectasis by Pseudomonas monteilii: a case report. BMC Infect Dis 2017; 17:511 [View Article]
    [Google Scholar]
  7. Huang C-R, Lien C-Y, Tsai W-C, Lai W-A, Hsu C-W et al. The clinical characteristics of adult bacterial meningitis caused by non-Pseudomonas (Ps.) aeruginosa Pseudomonas species: A clinical comparison with Ps. aeruginosa meningitis. Kaohsiung J Med Sci 2018; 34:49–55 [View Article]
    [Google Scholar]
  8. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  9. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  11. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  12. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  13. Stamatakis A. RAxML-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  14. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  15. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  16. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article]
    [Google Scholar]
  17. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  19. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  21. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article]
    [Google Scholar]
  22. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  24. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016e1900v1 [View Article]
    [Google Scholar]
  25. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  29. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  30. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  32. Kanehisa M. Enzyme annotation and metabolic reconstruction using KEGG. Methods Mol Biol 2017; 1611:135–145 [View Article] [PubMed]
    [Google Scholar]
  33. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  34. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 1953; 66:24–26 [View Article]
    [Google Scholar]
  35. Amoozegar MA, Shahinpei A, Sepahy AA, Makhdoumi-Kakhki A, Seyedmahdi SS et al. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland. Int J Syst Evol Microbiol 2014; 64:3565–3570 [View Article] [PubMed]
    [Google Scholar]
  36. Tohya M, Watanabe S, Teramoto K, Uechi K, Tada T et al. Pseudomonas asiatica sp. nov., isolated from hospitalized patients in Japan and Myanmar. Int J Syst Evol Microbiol 2019; 69:1361–1368 [View Article] [PubMed]
    [Google Scholar]
  37. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article]
    [Google Scholar]
  38. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966; 43:159–271 [View Article] [PubMed]
    [Google Scholar]
  39. National Committee for Clinical Laboratory Standards Performance Standards for Antimicrobial Susceptibility Testing; 30th Informational Supplement, M100Ed30 Wayne, Pa: Clinical and Laboratory Standards Institute; 2020
    [Google Scholar]
  40. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  41. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005649
Loading
/content/journal/ijsem/10.1099/ijsem.0.005649
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error