1887

Abstract

Four Gram-stain-positive, facultatively anaerobic, non-motile, non-spore-forming and rod-shaped bacteria (lx-72, lx-45, ZJ784 and ZJ955) were isolated from the respiratory tract or faeces of marmot () from the Qinghai–Tibet Plateau in China. Analysis of the 16S rRNA gene sequences showed that all strains belong to the genus and are more related to CCUG 64069 (95.1–97.4 % similarity) than to the genus . Both strain pairs grew well at pH 6–9 and 15–42°C, and ZJ784/ZJ955 could tolerate slightly higher NaCl (0.5–4.5 %, w/v) than lx-72/lx-45(0.5–3.5 %). Based on whole-genome sequences, the average nucleotide identity and digital DNA–DNA hybridization values between our four isolates and their closest relative were below the species delineation thresholds of 70 % and 95–96 %. The common major fatty acids (>10 %) of our four strains were anteiso-C and anteiso-C. For both new type strains, MK-8(H) and MK-9(H) were the major isoprenoid quinones, and diphosphatidylglycerol and phosphatidylglycerol were the main polar lipids. The genomic DNA G+C content of all strains was 53.9 mol%. Based on results from the genomic comparison, phylogenetic analysis, and physiological and biochemical characteristics, the four isolates represent two novel species in the genus , for which the names sp. nov. (type strain lx-72=KCTC 49658=GDMCC 1.2569) and sp. nov. (type strain ZJ784=KCTC 49507=GDMCC 1.1997) are proposed.

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • National Key R&D Program of China (Award 2019YFC1200505)
    • Principle Award Recipient: JingYang
  • National Key R&D Program of China (Award 2019YFC1200500)
    • Principle Award Recipient: JingYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005633
2022-12-20
2024-12-10
Loading full text...

Full text loading...

References

  1. Aravena-Román M, Inglis TJJ, Siering C, Schumann P, Yassin AF. Canibacter oris gen. nov., sp. nov., isolated from an infected human wound. Int J Syst Evol Microbiol 2014; 64:1635–1640 [View Article]
    [Google Scholar]
  2. Niu L, Lu S, Hu S, Jin D, Lai X et al. Streptococcusmarmotae sp. nov., isolated from the respiratory tract of Marmota himalayana. Int J Syst Evol Microbiol 2016; 66:4315–4322 [View Article] [PubMed]
    [Google Scholar]
  3. Meng J, Jin D, Yang J, Lai X-H, Pu J et al. Lactobacillus xujianguonis sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol 2020; 70:11–15 [View Article]
    [Google Scholar]
  4. Ge Y, Yang J, Lai X-H, Zhang G, Jin D et al. Vagococcus xieshaowenii sp. nov., isolated from snow finch (Montifringilla taczanowskii) cloacal content. Int J Syst Evol Microbiol 2020; 70:2493–2498 [View Article] [PubMed]
    [Google Scholar]
  5. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  6. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  7. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  8. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  13. Mount DW. Maximum parsimony method for phylogenetic prediction. CSH Protoc 2008; 2008:db [View Article]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  15. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  16. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [View Article] [PubMed]
    [Google Scholar]
  17. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  18. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  19. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  20. Hahn MW, Schmidt J, Taipale SJ, Doolittle WF, Koll U. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol 2014; 64:3254–3263 [View Article]
    [Google Scholar]
  21. Zhu W, Zhou J, Lu S, Yang J, Lai XH et al. Isolation and characterization of tick-borne Roseomonas haemaphysalidis sp. nov. and rodent-borne Roseomonas marmotae sp. nov. J Microbiol 2022; 60:137–146
    [Google Scholar]
  22. Hu S, Niu L, Wu L, Zhu X, Cai Y et al. Genomic analysis of Helicobacter himalayensis sp. nov. isolated from Marmota himalayana. BMC Genomics 2020; 21:826 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Dahal RH, Lee H, Chaudhary DK, Kim D-Y, Son J et al. Caenimonas soli sp. nov., isolated from soil. Arch Microbiol 2021; 203:1123–1129 [View Article]
    [Google Scholar]
  25. Feng G-D, Zhang J, Zhang X-J, Wang S-N, Xiong X et al. Hymenobacter metallilatus sp. nov., isolated from abandoned lead-zinc ore. Int J Syst Evol Microbiol 2019; 69:2142–2146 [View Article] [PubMed]
    [Google Scholar]
  26. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  27. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  32. Kanehisa M. Enzyme annotation and metabolic reconstruction using KEGG. Methods Mol Biol 2017; 1611:135–145 [View Article] [PubMed]
    [Google Scholar]
  33. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  34. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–5 [View Article] [PubMed]
    [Google Scholar]
  35. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  36. Heine D, Martin K, Hertweck C. Genomics-guided discovery of endophenazines from Kitasatospora sp. HKI 714. J Nat Prod 2014; 77:1083–1087 [View Article] [PubMed]
    [Google Scholar]
  37. Charan RD, Schlingmann G, Janso J, Bernan V, Feng X et al. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 2004; 67:1431–1433 [View Article] [PubMed]
    [Google Scholar]
  38. An TT, Picardal FW. Desulfocarbo indianensis gen. nov., sp. nov., a benzoate-oxidizing, sulfate-reducing bacterium isolated from water extracted from a coal bed. Int J Syst Evol Microbiol 2014; 64:2907–2914 [View Article] [PubMed]
    [Google Scholar]
  39. Chu L, Lai Y, Xu X, Eddy S, Yang S et al. A 52-kDa leucyl aminopeptidase from Treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 2008; 283:19351–19358 [View Article] [PubMed]
    [Google Scholar]
  40. Zhang L, Qiu Y-Y, Zhou Y, Chen G-H, van Loosdrecht MCM et al. Elemental sulfur as electron donor and/or acceptor: mechanisms, applications and perspectives for biological water and wastewater treatment. Water Res 2021; 202:117373 [View Article] [PubMed]
    [Google Scholar]
  41. Kondo T, Itoh S, Matsuoka M, Azai C, Oh-oka H. Menaquinone as the secondary electron acceptor in the type I homodimeric photosynthetic reaction center of Heliobacterium modesticaldum. J Phys Chem B 2015; 119:8480–8489 [View Article]
    [Google Scholar]
  42. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 2019; 112:1349–1356 [View Article] [PubMed]
    [Google Scholar]
  43. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  44. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  46. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005633
Loading
/content/journal/ijsem/10.1099/ijsem.0.005633
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error