1887

Abstract

Two Gram-stain-negative, catalase- and oxidase-positive, and aerobic bacteria, strains MSW7 and MSW13, were isolated from seawater. Cells of strains MSW7 and MSW13 are motile and non-motile rods, respectively. Strain MSW7 optimally grew at 25 °C and pH 7.0 and in the presence of 3 % (w/v) NaCl, whereas strain MSW13 optimally grew at 25 °C and pH 6.0–7.0 and in the presence of 2 % NaCl. As the sole respiratory quinone and the major fatty acids and polar lipids, strain MSW7 contained ubiquinone-8, C, C 8, C 8 and summed feature 3 (C 7 and/or C 6), and phosphatidylethanolamine and phosphatidylglycerol, respectively, whereas strain MSW13 contained menaquinone-6, C 6, iso-C, anteiso-C, and iso-C 3-OH, and phosphatidylethanolamine, respectively. The DNA G+C contents of strains MSW7 and MSW13 were 37.3 and 29.9 %, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains MSW7 and MSW13 were most closely related to A3 and WP25 with 98.8 and 98.1 % sequence similarities, respectively. The average nucleotide identity and digital DNA–DNA hybridization values between strain MSW7 and A3 and between strain MSW13 and KACC 17473 were 73.6 and 22.6 % and 80.4 and 23.8 %, respectively. Based on phenotypic, chemotaxonomic and phylogenetic data, strains MSW7 and MSW13 represent novel species of the genera and , respectively, for which the names sp. nov. and sp. nov. are proposed, respectively. The type strains of sp. nov. and sp. nov. are MSW7 (=KACC 22339=JCM 35001) and MSW13 (=KACC 22341=JCM 35021), respectively.

Funding
This study was supported by the:
  • National Institute of Biological Resources (Award NIBR202203205)
    • Principle Award Recipient: CheOk Jeon
  • Chung-Ang University
    • Principle Award Recipient: CheOk Jeon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005620
2022-11-30
2024-06-21
Loading full text...

Full text loading...

References

  1. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 1988; 10:152–160 [View Article]
    [Google Scholar]
  2. Xu Z-X, Zhang H-X, Han J-R, Dunlap CA, Rooney AP et al. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2017; 67:1969–1974 [View Article] [PubMed]
    [Google Scholar]
  3. Park S, Park JM, Yoon JH. Colwellia ponticola sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2019; 69:3062–3067 [View Article] [PubMed]
    [Google Scholar]
  4. Jung SY, Oh TK, Yoon JH. Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006; 56:33–37 [View Article] [PubMed]
    [Google Scholar]
  5. Wang FQ, Lin XZ, Chen GJ, Du ZJ. Colwellia arctica sp. nov., isolated from Arctic marine sediment. Antonie van Leeuwenhoek 2015; 107:723–729 [View Article] [PubMed]
    [Google Scholar]
  6. Choi EJ, Kwon HC, Koh HY, Kim YS, Yang HO. Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J Syst Evol Microbiol 2010; 60:1952–1957 [View Article] [PubMed]
    [Google Scholar]
  7. Christiansen L, Bech PK, Schultz-Johansen M, Martens HJ, Stougaard P. Colwellia echini sp. nov., an agar- and carrageenan-solubilizing bacterium isolated from sea urchin. Int J Syst Evol Microbiol 2018; 68:687–691 [View Article] [PubMed]
    [Google Scholar]
  8. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of “Flectobacillus glomeratus” as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48 Pt 1:223–235 [View Article]
    [Google Scholar]
  9. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 2013; 63:1665–1672 [View Article] [PubMed]
    [Google Scholar]
  10. Kim B-C, Oh HW, Kim H, Park D-S, Hong SG et al. Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. Int J Syst Evol Microbiol 2013; 63:4000–4005 [View Article] [PubMed]
    [Google Scholar]
  11. Li H, Zhang X-Y, Liu C, Lin C-Y, Xu Z et al. Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 2014; 64:973–978 [View Article] [PubMed]
    [Google Scholar]
  12. Park S, Yoon SY, Ha MJ, Yoon JH. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:2036–2042 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon JH, Kang SJ, Oh TK. Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006; 56:1251–1255 [View Article] [PubMed]
    [Google Scholar]
  14. Hyun D-W, Shin N-R, Kim M-S, Kim PS, Jung M-J et al. Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 2014; 64:1654–1661 [View Article] [PubMed]
    [Google Scholar]
  15. Kim E, Shin SK, Choi S, Yi H. Polaribacter vadi sp. nov., isolated from a marine gastropod. Int J Syst Evol Microbiol 2017; 67:144–147 [View Article] [PubMed]
    [Google Scholar]
  16. Kim KH, Baek JH, Wenting R, Jeon CO. Rheinheimera maricola sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2022; 72:005423 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–42 [View Article]
    [Google Scholar]
  19. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  20. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  24. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  28. Martin M, Barbeyron T, Martin R, Portetelle D, Michel G et al. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front Microbiol 2015; 6:1487 [View Article]
    [Google Scholar]
  29. Christiansen L, Pathiraja D, Bech PK, Schultz-Johansen M, Hennessy R et al. A multifunctional polysaccharide utilization gene cluster in Colwellia echini encodes enzymes for the complete degradation of κ-carrageenan, ι-carrageenan, and hybrid β/κ-Carrageenan. mSphere 2020; 5:e00792–00719 [View Article] [PubMed]
    [Google Scholar]
  30. Xing P, Hahnke RL, Unfried F, Markert S, Huang S et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J 2015; 9:1410–1422 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  32. Yoon K, Song JY, Kwak MJ, Kwon SK, Kim JF. Genome characteristics of the proteorhodopsin-containing marine flavobacterium Polaribacter dokdonensis DSW-5. J Microbiol 2017; 55:561–567 [View Article] [PubMed]
    [Google Scholar]
  33. González JM, Fernández-Gómez B, Fernàndez-Guerra A, Gómez-Consarnau L, Sánchez O et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 2008; 105:8724–8729 [View Article]
    [Google Scholar]
  34. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  35. Jung J, Bae SS, Chung D, Baek K. Tamlana carrageenivorans sp. nov., a carrageenan-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 2019; 69:1355–1360 [View Article] [PubMed]
    [Google Scholar]
  36. Seo YL, Jeong SE, Jin HM, Jeon CO. Flavobacterium microcysteis sp. nov., isolated from a culture of Microcystis aeruginosa. Int J Syst Evol Microbiol 2020; 70:1037–1041 [View Article]
    [Google Scholar]
  37. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101 Newark: MIDI Inc; 1990
    [Google Scholar]
  38. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  39. Nguyen TM, Kim J. A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J Microbiol 2017; 55:635–639 [View Article] [PubMed]
    [Google Scholar]
  40. Kim Y-O, Park I-S, Park S, Nam B-H, Park J-M et al. Polaribacter haliotis sp. nov., isolated from the gut of abalone Haliotis discus hannai. Int J Syst Evol Microbiol 2016; 66:5562–5567 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  42. Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 2004; 54:1627–1631 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005620
Loading
/content/journal/ijsem/10.1099/ijsem.0.005620
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error