1887

Abstract

A yellow, Gram-stain-positive, strictly aerobic, thermotolerant, non-motile and rod-shaped bacterial strain, designated RY-1, was isolated from a silt sample of Fuyang River, Wuqiang County, Hengshui City, Hebei Province, PR China. Cells showed oxidase- and catalase-positive activities. Growth occurred at 20–45 °C (optimum, 37 °C) and pH 6.0–8.0 (optimum, pH 7.0), and in the presence of 0–1.5 % (w/v) NaCl (optimum, 0%). A phylogenetic tree based on 16S rRNA gene sequences revealed that strain RY-1 formed a phylogenetic lineage with members within the family . A comparison of 16S rRNA gene sequences showed that strain RY-1 was most closely related to WS16 (98.6 %), CJ663 (97.7 %) and 3-3 (97.6 %). The genome size of strain RY-1 was 4.71 Mb, and the DNA G+C content was 44.3  %. The average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values between strain RY-1 and reference strains were all lower than the threshold values for species delineation. Strain RY-1 contained menaquinone-7 and iso-C, iso-C 3-OH and iso-CG as the sole respiratory isoprenoid quinone and major cellular fatty acids (≥5 %), respectively. The major polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids and four unidentified lipids. According to the results of phenotypic, phylogenetic and chemotaxonomic characteristics, strain RY-1 represents a novel species of the genus , for which the name p. nov. is proposed. The type strain is RY-1 (=GDMCC 1.2775=JCM 34870).

Funding
This study was supported by the:
  • Natural Science Research Project of Hengshui University (Award NO. 2018ZX001)
    • Principle Award Recipient: WeiShuzhen
  • Major Program of Shandong Province Natural Science Foundation (Award ZR2020ZD19)
    • Principle Award Recipient: AijvLiu
  • Natural Science Foundation of Shandong Province (Award ZR2020QH365)
    • Principle Award Recipient: XiuyunLi
  • Natural Science Foundation of Shandong Province (Award ZR2021MC113)
    • Principle Award Recipient: ZhiweiChen
  • Natural Science Foundation of Shandong Province (Award ZR2020MD121)
    • Principle Award Recipient: HongliangLiu
  • National Natural Science Foundation of China (Award No. 42177403)
    • Principle Award Recipient: HongliangLiu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005619
2023-01-18
2024-04-29
Loading full text...

Full text loading...

References

  1. Zhang NN, Qu JH, Yuan HL, Sun YM, Yang JS. Flavihumibacter petaseus gen. nov., sp. nov., isolated from soil of a subtropical rainforest. Int J Syst Evol Microbiol 2010; 60:1609–1612 [View Article]
    [Google Scholar]
  2. Kim W-H, Lee S, Ahn T-Y. Flavihumibacter cheonanensis sp. nov., isolated from sediment of a shallow stream. Int J Syst Evol Microbiol 2014; 64:3235–3239 [View Article] [PubMed]
    [Google Scholar]
  3. Lee D-H, Cha C-J. Flavihumibacter sediminis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2016; 66:4310–4314 [View Article] [PubMed]
    [Google Scholar]
  4. Ren T-T, Jin C-Z, Jin F-J, Li T, Kim C-J et al. Flavihumibacter profundi sp. nov., isolated from eutrophic freshwater sediment. J Microbiol 2018; 56:467–471 [View Article] [PubMed]
    [Google Scholar]
  5. Seo YL, Jung J, Khan SA, Kim KH, Jeon CO. Flavihumibacter soli sp. nov., isolated from soil. Curr Microbiol 2020; 77:3179–3184 [View Article]
    [Google Scholar]
  6. Lee HJ, Jeong SE, Cho M-S, Kim S, Lee S-S et al. Flavihumibacter solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2014; 64:2897–2901 [View Article] [PubMed]
    [Google Scholar]
  7. Han Y, Zhang F, Wang Q, Zheng S, Guo W et al. Flavihumibacter stibioxidans sp. nov., an antimony-oxidizing bacterium isolated from antimony mine soil. Int J Syst Evol Microbiol 2016; 66:4676–4680 [View Article] [PubMed]
    [Google Scholar]
  8. Ahmad M, Wang P, Li J-L, Wang R, Duan L et al. Impacts of bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions. Environ Pollut 2021; 289:117863 [View Article] [PubMed]
    [Google Scholar]
  9. Zhang S, Hao X, Tang J, Hu J, Deng Y et al. Assessing chromium contamination in red soil: monitoring the migration of fractions and the change of related microorganisms. Int J Environ Res Public Health 2020; 17:E2835 [View Article]
    [Google Scholar]
  10. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990; 28:1942–1946 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  12. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  19. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  22. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  23. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  24. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article]
    [Google Scholar]
  25. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  28. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  29. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome prokaryotic phylogeny. Bioinformatics 2005; 21:2329–2335 [View Article] [PubMed]
    [Google Scholar]
  30. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  32. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  33. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article]
    [Google Scholar]
  34. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article] [PubMed]
    [Google Scholar]
  35. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  37. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005619
Loading
/content/journal/ijsem/10.1099/ijsem.0.005619
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error